УТВЕРЖДЕНО постановлением администрации МО «Шеговарское» от 22 июня 2017 года № 29

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ШЕГОВАРСКОЕ» ШЕНКУРСКОГО РАЙОНА АРХАНГЕЛЬСКОЙ ОБЛАСТИ НА ПЕРИОД С 2015 ГОДА ПО 2030 ГОД (актуализация на 2017 год)

СОДЕРЖАНИЕ

1. K	КНИГА І. УТВЕРЖДАЕМАЯ ЧАСТЬ	3
Введ	дение	4
1.1.1	Показатели перспективного спроса на тепловую энергию (мощность) и	
тепл	оноситель	11
1.2.	Перспективные балансы располагаемой тепловой мощности источников тепловой эн	нергии
тепл	овых нагрузок	12
1.3.	Перспективные балансы теплоносителя	18
1.4.	Предложения по строительству, реконструкции и техническому перевооружению	
исто	очников тепловой энергии	19
1.5.	Предложения по строительству и реконструкции тепловых сетей	22
1.6.	Перспективные топливные балансы	24
1.7.	Инвестиции в новое строительство, реконструкцию и перевооружение объектов	
тепл	поснабжения	25
1.8.	Решение о выборе единой теплоснабжающей организации	26
1.9.	Решения о распределении тепловой нагрузки между источниками тепловой энергии	29
1.10	. Решения по бесхозяйным тепловым сетям	30
	ВЫВОДЫ и РЕКОМЕДАЦИИ	31
2 10	WHEN H OF COULDING MOUNTE MATERIA III I	22
	НИГА ІІ. ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ	
2.1.	Существующее положение в сфере производства, передачи и потребления теплов	
-	огии	
2.2.		
2.3.	Перспективные балансы тепловой мощности тепловых источников и тепловой на	агрузки
	62	
2.4.	Предложения по строительству, реконструкции и техническому перевооружению	
	очников тепловой энергии	
2.5.	Предложения по строительству и реконструкции тепловых сетей	
2.6.	Перспективные топливные балансы	68
2.7.	Обоснование инвестиций в строительство, реконструкцию и техническое	
пере	евооружение	68
2.8.	Обоснование предложения по определению единой теплоснабжающей организации	71

КНИГА І

УТВЕРЖДАЕМАЯ ЧАСТЬ
К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО
ОБРАЗОВАНИЯ «ШЕГОВАРСКОЕ» ШЕНКУРСКОГО
РАЙОНА АРХАНГЕЛЬСКОЙ ОБЛАСТИ
НА ПЕРИОД С 2015 ГОДА ПО 2030 ГОД
(актуализация на 2017 год)

ВВЕДЕНИЕ

Основанием для разработки схемы теплоснабжения муниципального образования «Шеговарское» Шенкурского района Архангельской области являются (далее - МО «Шеговарское») является:

- Федеральный закон от 27.07.2010 года № 190-ФЗ «О теплоснабжении»;
- техническое задание.

Общие положения

Схема теплоснабжения поселения — документ, содержащий материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности.

Проектирование системы теплоснабжения МО «Шеговарское» представляет собой комплексную проблему, от правильного решения которой во многом зависят масштабы необходимых капитальных вложений в эту систему. Прогноз спроса на тепловую энергию основан на прогнозировании развития муниципального образования, в первую очередь его градостроительной деятельности.

Рассмотрение проблемы начинается на стадии разработки генерального плана в самом общем виде совместно с другими вопросами местной инфраструктуры, и такие решения носят предварительный характер. Даётся обоснование необходимости сооружения новых или расширение существующих источников тепла для покрытия имеющегося дефицита мощности и возрастающих тепловых нагрузок на расчётный срок. При этом рассмотрение вопросов, выбора основного оборудования для котельных, а также трасс тепловых сетей от них, производится только после технико- экономического обоснования принимаемых решений. В качестве, основного предпроектного документа по развитию теплового хозяйства муниципального образования принята практика составления перспективных схем теплоснабжения.

Схемы разрабатываются на основе анализа фактических тепловых нагрузок потребителей с учётом перспективного развития на 15 лет, структуры топливного баланса, оценки состояния существующих источников тепла и тепловых сетей и возможности их дальнейшего использования, рассмотрения вопросов надёжности, экономичности.

В данной работе определена потребность в тепле жилищнокоммунального сектора МО «Шеговарское», а так же представлены перспективы развития систем теплоснабжения на период до 2030 года.

Теплоснабжающая организация определяется схемой теплоснабжения.

Основные цели и задачи схемы теплоснабжения:

- определение возможности подключения к сетям теплоснабжения объекта капитального строительства и организации, обязанной при наличии технической возможности произвести такое подключение;
- повышение надежности работы систем теплоснабжения в соответствии с нормативными требованиями;
- минимизация затрат на теплоснабжение в расчете на каждого потребителя в долгосрочной перспективе;
 - обеспечение жителей MO «Шеговарское» тепловой энергией;
- строительство новых объектов производственного и другого назначения, используемых в сфере теплоснабжения MO «Шеговарское»;
- улучшение качества жизни за последнее десятилетие обусловливает необходимость соответствующего развития коммунальной инфраструктуры существующих объектов.

Характеристика МО «Шеговарское»

МО «Шеговарское» находится на севере Шенкурского района, расположено на левом берегу реки Вага в 80 км от ее впадения в реку Северная Двина. Входит в состав Шенкурского района Архангельской области и является одним из аналогичных 9 административно-территориальных муниципальных образований.

Территория Шенкурского муниципального района располагается в южной части Архангельской области. Шенкурский район приравнен к районам Крайнего Севера.

Рисунок 1. Местоположение Шенкурского муниципального района в системе муниципальных образований Архангельской области

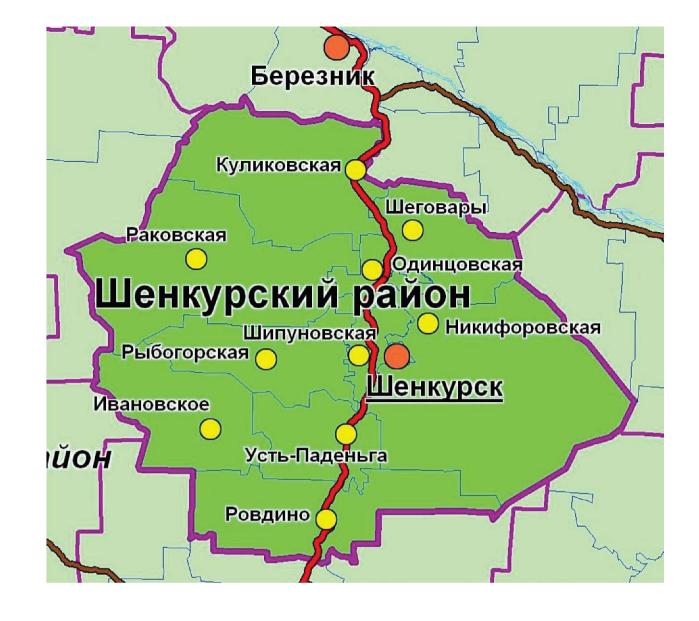


Рисунок 2. Территория Шенкурского района Архангельской области

МО «Шеговарское» было создано в 2006 году.

основании областного $N_{\underline{0}}$ 523-32-O3 Ha закона 01.07.2012 WO) ОТ преобразовании муниципальных образований Шенкурского отдельных муниципального района Архангельской области» с 1 января 2013 года произошло преобразование сельского поселения «Шеговарское» и сельского поселения «Ямскогорское» в сельское поселение «Шеговарское» с административным центром - село Шеговары.

МО «Шеговарское» занимает территорию 103470 га. Кроме населенных пунктов территория поселения занята преимущественно землями лесного и водного фондов.

Граничит с Сюмским сельским поселением на севере и с Федорогорским сельским поселением на юге.

МО «Шеговарское» включает 60 населенных пунктов: село Шеговары, деревни Абакумовская, Абрамовская, Андриановская, Антипинская, Антроповская, Беркиевская, Букреевская, Бурашевская, Водокужская, Гришинская, Данковская, Журавлевская, Захаровская, Зеленинская, Игнашевская, Князевская, Кобылинская, 1, Корбола, Коромысловская, Красковская, Колобовская Красная Кроповская, Кувакинская, Кузелевская, Леушинская, Леушинская, Литвиновская, Лихопуровская, Логиновская, Макушевская, Мальчугинская, Марковская, Медлеша, Наум-Болото, Нижнезолотилово, Никифоровская, Михеевская, Одинцовская, Павликовская, Павловская, Пенигеевская, Песенец, Пищагинская, Пушка, Самотворовская, Селезневская, Сенчуковская, Степинская, Степычевская, Стеховская, Фадеевская, Федьковская, Чаплинская, Черепаха, Чушевская, Яковлевская, поселки Красная Горка и Нерезьма.

Население муниципального образования «Шеговарское» по состоянию на 01 января 2015 года составляет 1818 человек. На территории поселения находится 708 хозяйств.

Железнодорожного сообшения Ближайшая поселение имеет. не железнодорожная станция - Вельск, находится в 174 км. С областным центром г. Архангельском транспортная связь осуществляется по автомобильной дороге федерального значения Москва-Архангельск (М-8).

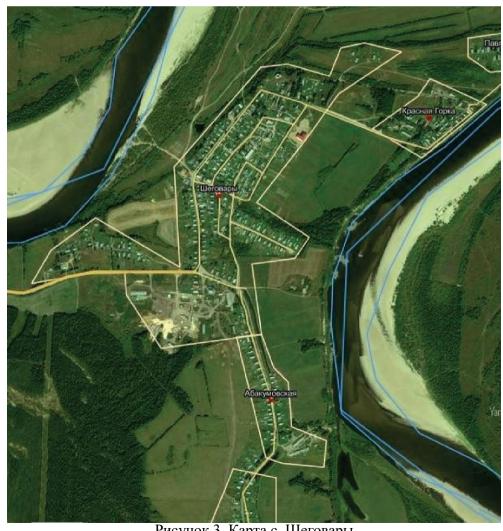


Рисунок 3. Карта с. Шеговары

Климат

Территория МО «Шеговарское» расположена в атлантико-арктической области умеренного пояса.

Климат формируется в условиях малого количества солнечной радиации зимой, под влиянием северных морей и интенсивного западного переноса, обеспечивающего вынос влажных морских масс воздуха с Атлантического океана (летом - холодного, зимой - теплого), а также под влиянием местных физико-географических особенностей территории.

Климат территории умеренно-континентальный, теплообеспеченность - умеренно-прохладная. Суровость зимы смягчают влажные ветры с Атлантики, часто дело доходит до оттепелей. Лето прохладное и дождливое.

Средняя температура января составляет - -14,6°С, июля - +17,2°С. Среднегодовая температура равна +1,4°С. Лето короткое и прохладное, зима длинная и холодная с устойчивым снежным покровом, весна затяжная с неустойчивыми температурами, осень - продолжительная, с ненастной погодой. Даты начала и конца сезонов условны и меняются из года в год. Астрономическая длительность весны - 92,8 суток, лета - 93,6 суток, осени - 89,8 суток и зимы - 89 суток.

Среднегодовая сумма осадков составляет 762 мм. Высота снежного покрова: средняя - 65см, наибольшего - 90 см, наименьшего - 55см. Среднегодовая скорость ветра составляет 3,6 м/сек.

Характеристика климатических условий

Средняя месячная и годовая температура воздуха, °C по СНиП 23-0199 «Строительная климатология»

ПЕРИОД	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
t,°C	-14,6	-12,6	-6,4	1,6	8,6	14,4	17,2	14,4	8,3	1,4	-5,3	-11,2	1,4

По строительно-климатическому районированию территория МО «Шеговарское» относится к климатическому подрайону I В.

Климатические характеристики района по СНиП 23-01-99 «Строительная климатология»

№ п/п	ПАРАМЕТРЫ	ПОКАЗАТЕЛИ
1 .Кли	матические параметры холодного периода года	
1	Температура воздуха наиболее холодных суток, °С, обеспеченностью 0,98	-41 -39
	0,92	
2	Температура воздуха наиболее холодной пятидневки, °C, обеспеченностью 0,98	-37 -34
	0,92	
3	Температура воздуха ° С, обеспеченностью 0,94	-19
4	Абсолютная минимальная температура, °С,	-47
5	Средняя суточная амплитуда температуры воздуха наиболее холодного месяца, С,	7,1
6	Продолжительность (сут.) и средняя температура воздуха (°C) периода со средней суточной температурой воздуха < 0°C,	168 -9,1
	< 8°C,	237 -5,3
	< 10°C,	258 -4,1
7	Средняя месячная относительная влажность воздуха наиболее холодного месяца, %	86
8	Количество осадков за ноябрь-март, мм	184
9	Преобладающее направление ветра за декабрь-февраль	Ю
10	Средняя скорость ветра, м/с за период со средней суточной температурой воздуха < 8°C,	4,5

Характеристика жилищного фонда

Жилой фонд и средняя обеспеченность по МО «Шеговарское» характеризуются следующими величинами:

	ВСЕГО, ЖИЛОИ ФОНД, М ²	СРЕДНЯЯ ОБЕСПЕЧЕННОСТЬ
	ОБЩЕЙ ПЛОЩАДИ	ЖИЛЫМ ФОНДОМ, М ² /ЧЕЛ
Всего по МО «Шеговарское»	57 350	31,54

Жилой фонд МО «Шеговарское» представлен усадебными, деревянными одно- и двухквартирными домами, а также в незначительной части 1-2 этажными кирпичными домами. На данный период на территории поселения преобладает индивидуальное строительство.

Распределение площади жилых помещений в зависимости от форм собственности

НАИМЕНОВАНИЕ	КАДЦАО	В ТОМ ЧІ	ЧИСЛО	
ПОКАЗАТЕЛЕЙ	ПЛОЩАДЬ ЖИЛЫХ ПОМЕЩЕНИЙ - ВСЕГО, ТЫС. М ²	в жилых домах (индивидуально- определенных зданиях)	в многоквар- тирных жилых домах	ПРОЖИВАЮ -ЩИХ, ЧЕЛ.
Жилищный фонд - всего	57,35	40,55	16,8	1 818
в том числе:				
в собственности частной				
граждан	52,3	40,35	12,5	1 603
организаций				
государственной				
муниципальной	4,3	0,1	4,2	215

Оборудование существующего жилищного фонда

НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ	ВСЕГО	В ТОМ ЧИСЛЕ ОБОРУДОВАННЫХ ЦЕНТРАЛИЗОВАННЫМ					
		водопр	водораз-	водо-	отоп-	ГВС	газом
		О	борными	отве-	лени-		(сетевым,
		-водом	колонками	дением	ем		сниженным)
Общая площадь жилых	57,35	4,0	4,2	-	2,6	-	-
помещ., тыс. м ²							
Число проживающих, тыс.	1,818	0,14	0,15	-	0,1	-	-
чел.							

По состоянию на 01.01.2015 г. общая площадь жилищного фонда на территории МО «Шеговарское» составила 57,35 тыс. кв.м, в т.ч. с централизованным теплоснабжением - 2,6 тыс. кв.м. Централизованное теплоснабжение имеется в с. Шеговары и п. Красная Горка.

Услугой централизованного теплоснабжения жилой фонд МО «Шеговарское» обеспечен на 4,5%, услуга горячего водоснабжения - не предоставляется.

Остальная часть жилых домов, общественные и административные здания снабжаются теплом от индивидуальных источников теплоснабжения на твердом топливе (внутридомовые печи и индивидуальные котлы).

1.1. Показатели перспективного спроса на тепловую энергию (мощность) и теплоноситель

1.1.1. Площадь строительных фондов и приросты площади строительных фондов

Существующий жилой фонд составляет 57350,0 ${\rm M}^2$, обеспеченность жилым фондом - 31,5 ${\rm M}^2/_{\rm чел}$. На расчетный период ожидается увеличение жилого фонда.

Ожидаемая численность населения, средняя обеспеченность жилым фондом, жилой фонд по расчетным периодам

Таблица 1.1.1.

No	ПОКАЗАТЕЛИ	ЕД.ИЗМ.	ИСХОДНЫМ	РАСЧЕТНЫ	Е ПЕРИОДЫ
Π/Π			ГОД - 2015	I очередь - 2020 г.	Расчетный срок - 2030 г.
1.	Численность населения	чел.	1818		
2.	Средняя жилая обеспеченность	м // чел	31,5		
3.	Расчетный жилой фонд	2 ТЫС. М	57,35		
	в т.ч. сущ. жилой фонд	2 ТЫС. М	57,35		
	в т.ч. проектируемый жилой фонд	2 ТЫС. М	-		

На проектные периоды предполагается строительство нового жилья усадебного типа, которое будет размещаться на свободных территориях.

1.1.2. Объемы потребления тепловой энергии (мощности) и приросты потребления тепловой энергии (мощности), теплоносителя в каждом расчетном элементе

Расчетными элементами для схемы теплоснабжения являются населенные пункты, население и/или общественные объекты, которые снабжаются тепловой энергией от котельных, либо зоны теплоснабжения котельных в границах населенных пунктов (в случае если в населенном пункте боле 1 котельной).

Расчетными элементами схемы теплоснабжения МО «Шеговарское» являются:

1. село Шеговары в зоне теплоснабжения котельной по ул. Центральная, 68а.

Проектная тепловая нагрузка централизованно отапливаемого жилищнокоммунального сектора и административных и бюджетных потребителей с. Шеговары составит 1,6 Гкал/час.

2. п. Красная Горка в зоне теплоснабжения котельной по ул. Садовая, 1.

Проектная тепловая нагрузка централизованно отапливаемого жилищно-коммунального сектора п. Красная Горка составит 1,023 Гкал/час.

Теплоснабжение потребителей с. Шеговары и п. Красная Горка на проектный период предусматривается от существующих котельной. В качестве топлива планируется использовать дрова.

Текущие и перспективные объемы тепловой энергии (мощности) и теплоносителя с разделением по видам потребления будут иметь следующий вид:

			Таблица 1.1.2.			
ОБЪЕМЫ ТЕПЛОВОЙ ЭНЕРГИИ (МОЩНОСТИ) И ТЕПЛОНОСИТЕЛЯ	2015 г.	2020 г.	2030 г.			
Котельная с. Шеговары, ул. Центральная, 68а						
Тепловая энергия на отопление, Гкал	1005,05	1005,05	1005,05			
Теплоноситель, т/ч	18,72	18,72	18,72			
Котельная п. Красная Горка, ул. Садовая, 1						
Тепловая энергия на отопление, Гкал	571,15	571,15	571,15			
Теплоноситель, т/ч	11,52	11,52	11,52			

1.2. Перспективные балансы располагаемой тепловой мощности источников тепловой энергии и тепловых нагрузок

1.2.1. Радиус перспективного теплоснабжения

Среди основных мероприятий по энергосбережению в системах теплоснабжения можно выделить оптимизацию систем теплоснабжения в районе с учетом эффективного радиуса теплоснабжения.

Передача тепловой энергии на большие расстояния является экономически неэффективной.

Радиус эффективного теплоснабжения позволяет определить условия, при которых подключение новых или увеличивающих тепловую нагрузку теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе на единицу тепловой мощности, определяемой для зоны действия каждого источника тепловой энергии.

Радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки К данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

1.2.2. Описание существующих и перспективных зон действия систем теплоснабжения, источников тепловой энергии

Часть жилого фонда с. Шеговары и п. Красная Горка, общественные здания, учреждения бюджетной сферы подключены к централизованной системе теплоснабжения, которая состоит из котельных и тепловых сетей. Эксплуатацию котельных и тепловых сетей на территории МО «Шеговарское» ООО «УК «Весна».

Существующие и перспективные зоны действия систем теплоснабжения Таблина 1.2.1.

№	НАИМЕНОВАНИЕ КОТЕЛЬНОЙ	МАКСИМАЛЬНОЕ УДАЛЕНИЕ ТОЧКИ ПОДКЛЮЧЕНИЯ ПОТРЕБИТЕЛЕЙ ОТ ИСТОЧНИИ ТЕПЛОВОЙ ЭНЕРГИИ, М						
		2015 г	2020 г	2030 г				
1	Котельная, с. Шеговары	300	300	300				
2	Котельная п. Красная Горка	180	180	180				

Энергетическая эффективность зоны действия источника тепловой энергии оценивается по полному коэффициенту использования теплоты топлива, который представляет собой отношение потерь теплоты топлива при выработке, транспорте и преобразовании теплоты (с учетом собственных и хозяйственных нужд) к тепловому эквиваленту, используемого на эти процессы, топлива. Коэффициент использования теплоты топлива зависит от нескольких ключевых параметров. Первый параметр, характеризует эффективность преобразования теплоты топлива в теплоту теплоносителя в котельном агрегате. В силу особенностей эксплуатации котлоагрегатов эффективность преобразования теплоты топлива в теплоту теплоносителя сильно зависит от строка службы котлоагрегата (при правильной эксплуатации такого снижения эффективности не наблюдается). Второй параметр характеризует потери теплоты и теплоносителя при его транспорте по тепловым сетям. Величина этих потерь (в упрощенных моделях), в свою очередь, зависит от двух параметров: относительной материальной характеристики тепловых сетей и срока службы тепловых сетей. Объединение параметров комплекс (относительный этих В один средневзвешенный службы теплоснабжения) строк системы установить зависимости, связывающие эффективность системы теплоснабжения с коэффициентом теплоты использования топлива в этой системе. При этом относительный средневзвешенный срок службы системы теплоснабжения вычисляется следующим образом: средневзвешенный срок службы элементов (сумма средневзвешенного теплоснабжения срока системы оборудования, источника теплоты и средневзвешенного срока службы тепловых сетей) умножается на приведенную материальную характеристику тепловых сетей. Если этот комплекс связать с КИТТ системы теплоснабжения, то можно

увидеть две области, которые могут быть описаны линейными связями (см. рисунок

1.1.1.).

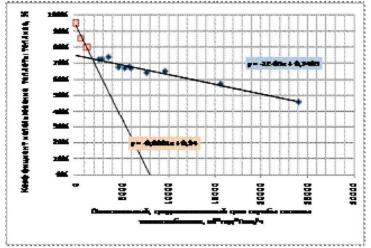


Рисунок 1.1.1. Величина КИТТ системы теплоснабжения в зависимости от относительного, средневзвешенного службы системы теплоснабжения

средневзвешенного службы относительного срока систем теплоснабжения от 2 до 30 тыс. м²*год/Гкал/ч (условно «старые системы теплоснабжения») и область от 0 до 2000 тыс. $\text{м}^2*\text{год}/\Gamma$ кал/ч (условно «новые теплоснабжения»). Чем ниже значение относительного. средневзвешенного срока службы (ОССС) системы теплоснабжения, тем выше КИТТ системы теплоснабжения. Значение ОССС тем ниже, чем меньший срок службы у котельных и тепловых сетей, и чем меньше значение приведенной материальной характеристики тепловых сетей. При ОССС равном нулю (например, при отсутствии тепловых сетей, или вновь установленном оборудовании котельной, или том и другом вместе) КИТТ не может быть меньше 0,95.

1.2.3. Описание существующих и перспективных зон действия индивидуальных источников тепловой энергии

Теплоснабжение существующей жилой застройки, а также общественных и коммунально-бытовых потребителей осуществляется от индивидуальных теплоснабжающих устройств, работающих на твердом топливе.

Зоны действия индивидуального теплоснабжения, как правило, удалены от централизованного теплоснабжения. В перспективе индивидуальное теплоснабжение останется основным для потребителей поселения.

Индивидуальное отопление осуществляется от теплоснабжающих устройств без потерь при передаче, так как нет внешних систем транспортировки тепла. Поэтому потребление тепла при теплоснабжении от индивидуальных установок можно принять равным его производству.

Зоны действия индивидуального теплоснабжения в настоящее время ограничиваются жилыми домами.

На основании данных сайтов компаний производителей оборудования, технических паспортов устройств характеристика индивидуальных теплогенерирующих установок имеет следующий вид:

Таблица. 1.2.2.

ВИД ТОПЛИВА	СРЕДНИЙ КПД ТЕПЛОГЕНЕРИРУЮЩИХ УСТАНОВОК	ТЕПЛОТВОРНАЯ СПОСОБНОСТЬ ТОПЛИВА, ГКАЛ/ЕД
Уголь каменный, т	0,72	4,90
Дрова	0,68	2,00
Газ сетевой, тыс. куб. м.	0,90	8,08

Главной тенденцией децентрализованного теплоснабжения населения, производства тепла индивидуальными теплогенераторами является увеличение потребления твердого топлива (дрова, отходы лесопиления).

1.2.4. Перспективные балансы тепловой мощности и тепловой нагрузки в зоне действия источников тепловой энергии

Перспективные балансы тепловой мощности и тепловой нагрузки в зоне действия источников тепловой энергии составят:

Перспективные тепловые балансы

Таблица 1.2.3

	Таолица 1.2.3.				
ПОКАЗАТЕЛЬ	ЕД.ИЗМ.	2020	2030		
Котельная с. Шеговары, ул. Центральная, 68а					
Выработка тепловой энергии	Гкал	1005,05	1005,05		
Расход теплоэнергии на собственные нужды	Гкал	23,42	23,42		
Отпуск тепловой энергии в сеть	Гкал	981,64	981,64		
Потери тепловой энергии	Гкал	277,4	277,4		
Полезный отпуск теплоэнергии	Гкал	875,64	875,64		
- население	Гкал	161,02	161,02		
- бюджет	Гкал	714,62	714,62		
Расход условного топлива	т у.т.	208,5	208,5		
Расход топлива	тыс. м	1090	1090		
Котельная п. Красная Горка, ул. Садовая, 1					
Выработка тепловой энергии	Гкал	571,15	571,15		
Расход теплоэнергии на собственные нужды	Гкал	13,31	13,31		
Отпуск тепловой энергии в сеть	Гкал	557,84	557,84		
Потери тепловой энергии	Гкал	155	155		
Полезный отпуск теплоэнергии	Гкал	507,84	507,84		
- население	Гкал	507,84	507,84		
- бюджет	Гкал				
Расход условного топлива	т у.т.	206,15	206,15		
Расход топлива	тыс.м	775	775		

1.2.5. Перспективные значения установленной тепловой мощности основного оборудования источника тепловой энергии

Таблица 1.2.4.

КОТЕЛЬНАЯ	МАРКА КОТЛОВ	СУММАРНАЯ	ПОДКЛЮЧЕН-	КПД
		УСТАНОВЛЕН-	НАЯ ТЕПЛОВАЯ	котлов,
		НАЯ МОЩНОСТЬ,	НАГРУЗКА,	,
		ГКАЛ/Ч	ГКАЛ/Ч	0/
				%
Котельная, с. Шеговары, ул.	КВм-0,93КД - 2	1,6	0,39	72
Центральная, 68а	шт.			
Котельная п. Красная Горка,	КВм-0,93КД - 2	1,023	0,24	60
ул. Садовая, 1	шт.			
	Универсал-6			

1.2.6. Перспективные значения установленной и располагаемой мощности основного оборудования источников тепловой энергии

Таблина 1.2.5.

				1 иолица 1.2.5.
КОТЕЛЬНАЯ	СУММАРНАЯ	РАСПОЛАГА-	ПРИСОЕДИ-	РЕЗЕРВЫ/
	УСТАНОВ-	ЕМАЯ	НЕННАЯ	ДЕФИЦИТЫ
	ЛЕННАЯ	МОЩНОСТЬ С	НАГРУЗКА,	РАСПОЛАГАЕ-
	мощность,	УЧЕТОМ КПД	ГКАЛ/Ч	МОЙ МОЩНОСТИ
	ГКАЛ/Ч	КОТЛОВ ГКАЛ/Ч		ГКАЛ/Ч
Котельная, с. Шеговары, ул.	1,6	1,1	0,5628	0,53
Центральная, 68а		·		·
Котельная п. Красная Горка,	1,023	0,60	0,313	0,287
ул. Садовая, 1				

1.2.7. Перспективные затраты тепловой мощности на собственные и хозяйственные нужды и значения существующей тепловой мощности источника тепловой энергии нетто

Таблица 1.2.6.

КОТЕЛЬНАЯ	СУММАРНАЯ	ЗАТРАТЫ НА	МОЩНОСТЬ
	УСТАНОВЛЕННАЯ	СОБСТВЕННЫЕ	ТЕПЛОВОГО
	МОЩНОСТЬ, ГКАЛ/Ч	НУЖДЫ, ГКАЛ/Ч	ИСТОЧНИКА НЕТТО,
			ГКАЛ/ЧАС
Котельная, с. Шеговары, ул.	1,6	0,037	0,906
Центральная, 68а			
Котельная п. Красная Горка,	1,023	0,026	0,51
ул. Садовая, 1			

1.2.8. Значения перспективных потерь тепловой энергии при ее передаче по тепловым сетям

Таблица 1.2.7.

КОТЕЛЬНАЯ	РАСПОЛАГАЕМАЯ	МОЩНОСТЬ	ПОТЕРИ ТЕПЛОВОЙ
	МОЩНОСТЬ, ГКАЛ/Ч	ТЕПЛОВОГО	ЭНЕРГИИ В
		ИСТОЧНИКА	ТЕПЛОВЫХ СЕТЯХ
		НЕТТО,	
		ГКАЛ/ЧАС	ГКАЛ/Ч
Котельная, с. Шеговары, ул.	1,6	1,1	0,162
Центральная, 68а			
Котельная п. Красная Горка, ул.	1,023	0,60	0,070
Садовая, 1			

1.2.9. Затраты перспективной тепловой мощности на хозяйственные нужды тепловых сетей

Таблина 1.2.8.

ЗАТРАТЫ ТЕПЛОВОЙ МОЩНОСТИ НА ХОЗЯЙСТВЕННЫЕ НУЖДЫ
ТЕПЛОВЫХ СЕТЕЙ, ГКАЛ/ЧАС
Нет
Нет

1.2.10. Значения перспективной тепловой мощности источников теплоснабжения, в том числе источников тепловой энергии, принадлежащих потребителям, источников тепловой энергии теплоснабжающих организаций, с выделением аварийного резерва и резерва по договорам на поддержание резервной тепловой мощности

Таблица 1.2.9.

			100011111400 112171
КОТЕЛЬНАЯ	РАСПОЛАГАЕМАЯ	ПЕРСПЕКТИВНАЯ	РЕЗЕРВ МОЩНОСТИ,
	МОЩНОСТЬ, ГКАЛ/Ч	НАГРУЗКА, (С УЧЕТОМ	ГКАЛ/ЧАС
		ПОТЕРЬ В ТЕПЛОВЫХ	
		СЕТЯХ) ГКАЛ/Ч	
Котельная, с. Шеговары, ул.	1,1	0,5628	0,5372
Центральная, 68а			
Котельная п. Красная Горка,	0,60	0,313	0,287
ул. Садовая, 1			

1.3. Перспективные балансы теплоносителя

1.3.1. Перспективные балансы производительности водоподготовительных установок

Водоподготовительное оборудование на котельных МО «Шеговарское» отсутствует. Отсутствие водоподготовки ведет к увеличению расхода топлива и сокращению службы срока основного оборудования котельных.

Потери теплоносителя обосновываются только аварийными участками теплосети. Разбор теплоносителя потребителями отсутствует. Таким образом, при безаварийном режиме работы количество теплоносителя возвращенного равно количеству теплоносителя отпущенного в тепловую сеть.

Поэтому потери теплоносителя возможны только на аварийных участках теплосети при возникновении утечек. Таким образом, при безаварийном режиме работы количество теплоносителя возвращенного равно количеству теплоносителя отпущенного в тепловую сеть.

Таблица 1.3.1.

	таолица 1:5:1
НАИМЕНОВАНИЕ КОТЕЛЬНОЙ	ПЕРСПЕКТИВНЫЙ РАСХОД ТЕПЛОНОСИТЕЛЯ В ТЕПЛОВОЙ
	СЕТИ, Т/ЧАС
Котельная, с. Шеговары, ул.	18,72
Центральная, 68а	
Котельная п. Красная Горка, ул.	11,52
Садовая, 1	

1.3.2. Перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей.

Перспективные балансы производительности водоподготовительных установок источника тепловой энергии для компенсации потерь теплоносителя в аварийных режимах работы системы теплоснабжения:

Таблица 1.3.2.

НАИМЕНОВАНИЕ КОТЕЛЬНОЙ	MAX	MAX
	ПРОИЗВОДИТЕЛЬНОСТЬ ПОДПИТОЧНЫХ НАСОСОВ, М³/ЧАС	ПРОИЗВОДИТЕЛЬНОСТЬ ВПУ, М³/ЧАС
Котельная, с. Шеговары, ул. Центральная,	50,0	-
68a		
Котельная п. Красная Горка, ул. Садовая, 1	50,0	

1.4. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии

Теплоснабжение перспективных объектов новой застройки, которые планируется разместить вне зоны действия существующих котельных, на проектный период предлагается осуществить от автономных систем поквартирного отопления.

1.4.1. Предложения по строительству источников тепловой энергии, обеспечивающие перспективную тепловую нагрузку на вновь осваиваемых территориях поселения

Мощности существующей котельной достаточно, чтобы подключить перспективную тепловую нагрузку на расчетный срок.

Теплоснабжение перспективных объектов новой застройки, которые планируется разместить вне зоны действия существующей котельной, на проектный период предлагается осуществить от автономных систем отопления. Поэтому строительства новых источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку, не планируется.

1.4.2. Предложения по реконструкции источников тепловой энергии, обеспечивающие перспективную тепловую нагрузку в существующих и расширяемых зонах действия источников тепловой энергии

Существующие твердотопливные котельные МО «Шеговарское» обеспечивают тепловой энергией на цели отопления потребителей с. Шеговары и п. Красная Горка. Суммарная подключенная нагрузка составляет 0,63 Гкал/ч, суммарная установленная мощность котельных - 2,623 Гкал/ч.

1.4.3. Предложения по техническому перевооружению источников тепловой энергии с целью повышения эффективности работы систем теплоснабжения

На котельных МО «Шеговарское» часть оборудования выработало расчетный срок эксплуатации и не может обеспечить надежность и качество теплоснабжения объектов бюджетной сферы и жилого фонда.

Предложения по техническому перевооружению на котельных МО «Шеговарское» в существующих зданиях с целью повышения надежности и эффективности работы оборудования.

Таблица 1.4.2

КОТЕЛЬНАЯ	МЕРОПРИЯТИЕ	ЦЕЛИ РЕАЛИЗАЦИИ МЕРОПРИЯТИЯ
Котельные с Шеговары, п. Красная Горка	Приобретение и монтаж установки химической водоподготовки для системы теплоснабжения	Увеличение срока эксплуатации тепловых энергоустановок и тепловых сетей
	Установка коммерческих приборов учета тепловой энергии	Учет фактического отпуска тепловой энергии

1.4.4. Предложения по реконструкции котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии

Предложения по реконструкции котельных с увеличением зоны ее действия путем включения в нее зон действия существующих источников тепловой энергии отсутствуют.

1.4.5. Меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также выработавших нормативный срок службы либо в случаях, когда продление срока службы технически невозможно или экономически нецелесообразно

Не предусмотрено мер по выводу эксплуатации, консервации и демонтажу избыточных или выработавших нормативный срок службы источников тепловой энергии.

1.4.6. Меры по переоборудованию котельных в источники комбинированной выработки электрической и тепловой энергии

Меры по переводу котельных в источник комбинированной выработки электрической и тепловой энергии схемой теплоснабжения не предусмотрены.

1.4.7. Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников комбинированной выработки тепловой и электрической энергии в «пиковый» режим

Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников комбинированной выработки тепловой и электрической энергии в «пиковый» режим не предусмотрены.

1.4.8. Решения о загрузке источников тепловой энергии, распределении (перераспределении) тепловой нагрузки потребителей тепловой энергии в каждой зоне действия системы теплоснабжения между источниками тепловой энергии, поставляющими тепловую энергию в данной системе теплоснабжения

Источники тепловой энергии МО «Шеговарское» расположены обособленно друг от друга. В связи с этим решений о загрузке источников тепловой энергии, распределении (перераспределении) тепловой нагрузки потребителей тепловой энергии в каждой зоне действия системы теплоснабжения между источниками тепловой энергии, поставляющими тепловую энергию в данной системе теплоснабжения не предусматривается.

1.4.9. Предложения по целесообразности ввода новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии

Предложения по вводу новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии отсутствуют.

1.4.10. Оптимальный температурный график отпуска тепловой энергии для каждого источника тепловой энергии или группы источников в системе теплоснабжения

Оптимальный температурный график отпуска тепловой энергии для источников тепловой энергии в системе теплоснабжения в соответствии с действующим законодательством разрабатывается в процессе проведения энергетического обследования источников тепловой энергии, тепловых сетей, потребителей тепловой энергии.

1.5. Предложения по строительству и реконструкции тепловых сетей

1.5.1. Предложения по новому строительству и реконструкции тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии (использование существующих резервов)

В связи с отсутствием зон с дефицитом располагаемой мощности предложений по строительству и реконструкции тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии нет.

1.5.2. Предложения строительству ПО новому тепловых ДЛЯ перспективных приростов тепловой нагрузки обеспечения вновь комплексную осваиваемых районах поселения жилищную, под или производственную застройку

Для обеспечения теплоснабжением перспективного прироста тепловой нагрузки, связанного со строительством объектов новой застройки, необходимость в строительстве тепловых сетей будет определяться по мере застройки новых кварталов, при рабочем проектировании.

1.5.3. Предложения по новому строительству и реконструкции тепловых сетей, обеспечивающие условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения

Строительство (реконструкция) тепловых сетей для обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии не планируется.

1.5.4. Предложения по новому строительству или реконструкции тепловых сетей для повышения эффективности функционирования системы теплоснабжения

В МО «Шеговарское» сети введены в эксплуатацию в с. Шеговары - в 1978, 2010 и 2016 году, в п. Красная Горка - в 1987 году. Высокий процент изношенности тепловых сетей приводит к значительным потерям тепловой энергии, которые составляют до 10,8 процентов. Суммарные потери тепловой энергии из-за ветхого состояния тепловых сетей составляют 277,4 Гкал в год.

При эксплуатации не новых тепловых сетей одной из приоритетных задач для эксплуатирующих организаций является определение и устранение утечек. Для определения мест утечек в отопительный сезон, необходимо составлять графики магистральных и разводящих тепловых сетей, контролируемые Диспетчерской службой. В ремонтный период до начала отопительного сезона эксплуатирующая компания должна еженедельно составлять графики поиска отключения разводящих участков тепловых утечек с помощью Диспетчерская служба при этом анализирует расход подпитки в тепловых сетях и причину их изменений и сравнивает с данными подпитки за два предыдущих года. Однако тепловые потери на сетях возникают не только из-за утечек. Ниже

перечислены основные мероприятия, которые позволят снизить тепловые потери:

- 1. Перекладка изношенных участков тепловых сетей. При реконструкции существующих тепловых сетей следует ориентироваться на применение трубопроводов и их элементов в пенополиуретановой изоляции с гидрозащитным покрытием из полиэтилена типа ППУ ПЭ.
- 2. Замена изоляции с применением современных материалов в надземных тепловых сетях и труб, проложенных в подвалах зданий.
- 3. Восстановление изоляции с применением современных материалов в магистральных и разводящих тепловых камерах.
- 4. Установка современного оборудования и запорной арматуры (шаровые вентиля, сильфонные компенсаторы и др.).
- 5. Систематический поиск утечек и их ликвидация.6. Систематический анализ завышения обратной температуры в тепловых сетях и у абонентов и ее устранение.
- Периодическая промывка дренажных систем в тепловых сетях.
 Применение новых технологий по подключению абонентов к тепловым сетям - врезка под давлением, в том числе и в бесканальные трассы.

Без интенсивной замены тепловых сетей, превысивших срок эксплуатации не обойтись, причем, необходимо перекладывать такое их количество, чтобы оно превосходило темпы старения тепловых сетей. В среднем, ежегодно необходима перекладка 35 м тепловых сетей.

Для получения достоверной информации о состоянии тепловых сетей (тепловых узлов, пунктов, трубопроводов, изоляции, строительных конструкций и пр.) необходимо провести инженерные изыскания и полное диагностирование на тепловых сетях. Проведение в последующем режимной наладки даст возможность настроить гидравлический, и соответственно тепловой режимы работы сетей. Результатом проведения режимной наладки будет технический отчет, включающий в себя полноценный гидравлический расчет тепловых сетей и дроссельных устройств у потребителей с указанием нагрузок потребителей (отопление, вентиляция, ГВС), расчетных перепадов давления и диаметров дроссельных устройств, а также согласованные и утвержденные температурные графики на источниках тепловой энергии.

Предложения по строительству и реконструкции тепловых сетей для повышения эффективности функционирования системы теплоснабжения

Таблица 1.5.1.

30 /	Таолица 1.3				
№ п/п	Наименование мероприятий	Цель реализации мероприятий	Эта	апы	
		мероприяти	2015-2020 г.г.	2021-2030 г.г.	
1	Проведение инженерных Изысканий, Диагностики и Режимной наладки тепловых сетей	Получение уточненных тепловых схем, информации о состоянии тепловых сетей. Настройка гидравлического, теплового режима работы тепловых сетей	X	х	
2	Разработка перспективных планов перекладок тепловых сетей до 2020 и 2030 гг., согласно результатам диагностики и Режимной наладки, а также в связи с реконструкцией источников теплоснабжения. В среднем, ежегодно необходима перекладка 35 м тепловых сетей.	Сокращение потерь тепловой энергии	X	х	
3	Реконструкции изношенных участков тепловых сетей, км.	Сокращение потерь тепловой энергии	2 x 0,26971	2 x 0,382	

1.5.5. Реконструкция тепловых сетей, подлежащих замене в связи с исчерпанием эксплуатационного ресурса

Замена тепловых сетей, выработавших свой ресурс, будет производиться в рамках планово-предупредительных ремонтов.

1.6. Перспективные топливные балансы

Существующие и перспективные топливные балансы для источников тепловой энергии, расположенных в границах МО «Шеговарское» по видам основного топлива представлены в таблице 1.6.1.

Таблица 1.6.1

						<u>гаолица 1.0.1.</u>
НАИМЕНОВАНИЕ	ВИД	ГОДОВОЙ	РАСХОД ТО	ОПЛИВА В	РЕЗЕРВНЫЙ	АВАРИЙНЫЙ
КОТЕЛЬНОЙ	ТОПЛИВА	НАТУРАЛ	ьных еди	НИЦАХ (ВИД ТОПЛИВА	ВИД
			$TЫС.M^3$)			ТОПЛИВА
		2015	2020	2030		
Котельная, с.	дрова	1090	1090	1090	не	не
Шеговары, ул.					предусмотрен	предусмотрен
Центральная, 68а						
Котельная п.	дрова	775	775	775	не	не
Красная Горка, ул.	_				предусмотрен	предусмотрен
Садовая, 1						

1.7. Инвестиции в строительство, реконструкцию и техническое Перевооружение

Таблица 1.7.1. ПЕРИОЛ РЕАПИЗАНИИ

№	НАИМЕНОВАНИЕ ИСТОЧНИКОВ	ФИНАНСОВЫЕ	ПЕРИОД РЕД	таолица т./.т. Ализании
П/П		ПОТРЕБНОСТИ,	2015-2020 г.	2021-2030 г
		МЛН.РУБ.	2013 2020 1.	2021 2030 1
1	Инвестиционные проекты по реконструк	ции, модернизац	ии, строительс	тву тепловых
	источников.			
1.1.	существующая котельная с. Шеговары - замена	1,16		1,16
	существующих котлов на новые с целью			
	использования их мощности для			
	теплоснабжения существующей застройки			
1.2.	существующая котельная п. Красная Горка -	1,158	1,158	
	замена существующих котлов на новые с		1,100	
	целью использования их мощности для			
	теплоснабжения существующей застройки			
	Всего объем финансовых затрат, в том числе по	2,318	1,158	1,16
	источникам их финансирования:			
	-бюджетное финансирование	2,318	1,158	1,16
	-собственные средства	-	-	-
	-внебюджетные средства	-	-	-
2	Инвестиционные затраты по реконструкции, м			
2.1.	Реконструкция участков тепловых 0,526 км на	2,967	0,573	2,394
	ППУ по ГОСТ 30732			
	Всего объем финансовых затрат, в том числе по	2,967	0,573	2,394
	источникам их финансирования:			
	-бюджетное финансирование	-		-
	-собственные средства	<u> </u>	_	<u>-</u>
	-внебюджетные средства	2,967	0,573	2,394
3	Инвестиционные затра		,	2,374
3.1.	Установка приборов учета и контроля на	0,8	0,8	
3.1.	объектах теплоснабжения	0,0	0,0	
3.2.	Приобретение и монтаж установки химической	0,44	0,22	0,22
	водоподготовки для системы теплоснабжения	-,	-,	- /
	Всего объем финансовых затрат,	1,24	1,02	0,22

в том числе по источникам их финансирования:			
-бюджетное финансирование	0,44	0,22	0,22
-собственные средства	0,8	0,8	-
-внебюджетные средства			
ИТОГО: суммарные инвестиционные затраты	5,831	2,937	2,894
в том числе по источникам			
-бюджетное финансирование	2,758	1,38	1,378
-собственные средства	0,8	0,8	-
-внебюджетные средства	2,967	0,573	2,394

Потребность в финансовых средствах для осуществления мероприятий по развитию системы теплоснабжения МО «Шеговарское» определена по укрупненным показателям на основе прайс-листов заводов изготовителей и должна быть уточнена по результатам выполненных специализированными организациями рабочих проектов по реконструкции котельных и тепловых сетей.

Предложения по величине необходимых инвестиций в реконструкцию и техническое перевооружение тепловых сетей и тепловых пунктов первоначально планируются на период до 2020 года и подлежат ежегодной корректировке на каждом этапе планируемого периода с учетом генерального плана МО «Шеговарское».

Объём средств будет уточняться после доведения лимитов бюджетных обязательств из бюджетов всех уровней на очередной финансовый год и плановый период.

1.8. Решение об определении единой теплоснабжающей организации

В соответствии с пунктом 28 статьи 2 Федерального закона № 190-ФЗ «О теплоснабжении»:

«единая теплоснабжающая организация в системе теплоснабжения (далее единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации».

В соответствии с пунктом 6 статьи 6 Федерального закона № 190-ФЗ «О теплоснабжении»:

«К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации».

Предложения по установлению единой теплоснабжающей организации осуществляются на основании критериев определения единой теплоснабжающей организации, установленных разделом II Правил организации теплоснабжения в Российской Федерации, утвержденных постановлением Правительства Российской Федерации от 08 августа 2012 года № 808.

- 1. Статус единой теплоснабжающей организации присваивается органом местного самоуправления или федеральным органом исполнительной власти (далее уполномоченные органы) при утверждении схемы теплоснабжения поселения, городского округа, а в случае смены единой теплоснабжающей организации при актуализации схемы теплоснабжения.
- 2. В проекте схемы теплоснабжения должны быть определены границы зон деятельности единой теплоснабжающей организации (организации). Границы зоны (зон) деятельности единой теплоснабжающей организации (организации) определяются границами системы теплоснабжения, в отношении которой присваивается соответствующий статус.

В случае, если на территории поселения, городского округа существуют несколько систем теплоснабжения, уполномоченные органы вправе:

- определить единую теплоснабжающую организацию (организации) в каждой из систем теплоснабжения, расположенных в границах поселения, городского округа;
- определить на несколько систем теплоснабжения единую теплоснабжающую организацию, если такая организация владеет на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в каждой из систем теплоснабжения, входящей в зону её деятельности.
- 3. Для присвоения статуса единой теплоснабжающей организации впервые на территории поселения, городского округа, лица, владеющие праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями на территории поселения, городского округа вправе подать в течение одного месяца с даты размещения на сайте поселения, городского округа, города федерального значения проекта схемы теплоснабжения в орган местного самоуправления заявки на присвоение статуса единой теплоснабжающей организации с указанием зоны деятельности, в которой указанные лица планируют исполнять функции единой теплоснабжающей организации.

Орган местного самоуправления обязан разместить сведения о принятых заявках на сайте поселения, городского округа.

случае, если В отношении одной зоны деятельности единой теплоснабжающей организации подана одна заявка от лица, владеющего на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей системе теплоснабжения, то статус единой теплоснабжающей организации присваивается указанному лицу. В случае, если в отношении одной зоны деятельности единой теплоснабжающей организации подано несколько заявок от лиц, владеющих на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми соответствующей теплоснабжения, сетями системе орган местного

самоуправления присваивает статус единой теплоснабжающей организации в соответствии с критериями, указанными в пункте 11 Правил организации теплоснабжения в Российской Федерации.

- 5. Критериями определения единой теплоснабжающей организации являются:
- праве собственности или ином законном основании источниками тепловой энергии с наибольшей совокупной установленной тепловой мощностью в границах зоны деятельности единой теплоснабжающей организации или тепловыми сетями, к которым непосредственно подключены источники тепловой энергии с наибольшей совокупной установленной тепловой деятельности единой теплоснабжающей мощностью границах зоны организации;
- 2) размер уставного (складочного) капитала хозяйственного товарищества или общества, уставного фонда унитарного предприятия должен быть не менее остаточной балансовой стоимости источников тепловой энергии и тепловых сетей, которыми указанная организация владеет на праве собственности или ином законном основании в границах зоны деятельности единой теплоснабжающей организации.

Размер уставного капитала и остаточная балансовая стоимость имущества определяются по данным бухгалтерской отчетности на последнюю отчетную дату перед подачей заявки на присвоение статуса единой теплоснабжающей организации.

В отношении случае если В одной зоны деятельности теплоснабжающей организации подано более одной заявки на присвоение соответствующего статуса от лиц, соответствующих критериям, установленным в пункте 11 Правил организации теплоснабжения в Российской Федерации, статус единой теплоснабжающей организации присваивается организации, лучшей мере обеспечить надежность теплоснабжения соответствующей системе теплоснабжения.

Способность обеспечить надежность теплоснабжения определяется наличием у организации технических возможностей и квалифицированного персонала по наладке, мониторингу, диспетчеризации, переключениям и оперативному управлению гидравлическими режимами, и обосновывается в схеме теплоснабжения.

- 7. В случае если в отношении зоны деятельности единой теплоснабжающей организации не подано ни одной заявки на присвоение соответствующего статуса, статус единой теплоснабжающей организации присваивается организации, владеющей в соответствующей зоне деятельности источниками тепловой энергии и (или) тепловыми сетями, и соответствующей критериям, установленным в пункте 11 Правил организации теплоснабжения в Российской Федерации.
- 8. Единая теплоснабжающая организация при осуществлении своей деятельности обязана:
- а) заключать и надлежаще исполнять договоры теплоснабжения со всеми обратившимися к ней потребителями тепловой энергии в своей зоне деятельности;

- б) осуществлять мониторинг реализации схемы теплоснабжения и подавать в орган, утвердивший схему теплоснабжения, отчеты о реализации, включая предложения по актуализации схемы теплоснабжения;
- в) надлежащим образом исполнять обязательства перед иными теплоснабжающими и теплосетевыми организациями в зоне своей деятельности; г) осуществлять контроль режимов потребления тепловой энергии в зоне своей деятельности.

В настоящее время на территории МО «Шеговарское» деятельность по производству и передаче тепловой энергии осуществляет теплоснабжающая организация - ООО «УК «Весна».

По критериям выбора единой теплоснабжающей организации и способности обеспечить надежное теплоснабжение предлагается в качестве единой теплоснабжающей организации в зонах действия централизованного теплоснабжения МО «Шеговарское» определить ООО «УК «Весна».

Тарифы на тепловую энергию

Таблица 1.8.1.

	НАИМЕНОВАНИЕ КОТЕЛЬНОЙ	ДАТА ВВОДА ТАРИФА	ТАРИФ ДЛЯ НАСЕЛЕНИЯ, *(РУБ/ГКАЛ)	ТАРИФ ПРОЧИМ ПОТРЕБИТЕЛЯМ, *(РУБ/ГКАЛ)
1		с 30.12.2012г.	928,65	2007,0
		с 01.07.2013г.	1068,0	3267,0
	Котельная с. Шеговары,	с 01.01.2014г.	928,65	3267,0
	ул. Центральная, 68а	с 01.07.2014г.	1141,05	3267,0
		с 01.01.2015г.	1141,05	3267,0
		с 01.07.2015г.	1273,0	3730,54
2		с 30.12.2012г.	928,65	1947,0
		с 01.07.2013г.	1068,0	2807,0
	Котельная п. Красная	с 01.01.2014г.	928,65	2807,0
	Горка, ул. Садовая, 1	с 01.07.2014г.	1141,05	2863,0
		с 01.01.2015г.	1141,05	2863,0
		с 01.07.2015г.	1273,0	3978,89

^{*} тариф указан с учетом НДС

1.9. Решение о распределении тепловой нагрузки между источниками тепловой энергии

Раздел «Решения о распределении тепловой нагрузки между источниками тепловой энергии» должен содержать распределение тепловой нагрузки между источниками тепловой энергии, в том числе определять условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения.

Возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения отсутствует, так как в МО «Шеговарское» теплоснабжение потребителей осуществляется от котельных, территориально удаленных друг от друга.

1.10. Решение по бесхозяйным тепловым сетям

Статья 15, пункт 6. Федерального закона от 27 июля 2010 года № 190-ФЗ «О теплоснабжении»: «В случае выявления бесхозяйных тепловых сетей (тепловых эксплуатирующей организации) имеющих орган самоуправления поселения или городского округа до признания права собственности на указанные бесхозяйные тепловые сети в течение тридцати дней с даты их выявления обязан определить теплосетевую организацию, тепловые сети которой непосредственно соединены с указанными бесхозяйными тепловыми сетями, или единую теплоснабжающую организацию в системе теплоснабжения, в которую входят указанные бесхозяйные тепловые сети и, которая осуществляет содержание и обслуживание указанных бесхозяйных тепловых сетей. Орган регулирования обязан включить затраты на содержание и обслуживание бесхозяйных тепловых сетей в тарифы соответствующей организации на следующий период регулирования».

Принятие на учет теплоснабжающей организацией бесхозяйных тепловых сетей (тепловых сетей, не имеющих эксплуатирующей организации) осуществляется на основании постановления Правительства Российской Федерации от 17.09.2003 г. № 580.

На основании статьи 225 Гражданского кодекса РФ по истечении года со дня постановки бесхозяйной недвижимой вещи на учет орган, уполномоченный управлять имуществом, может обратиться в суд с требованием о признании права муниципальной собственности на эту вещь.

В настоящее время на территории МО «Шеговарское» бесхозяйных тепловых сетей не выявлено.

ВЫВОДЫ и РЕКОМЕДАЦИИ

В результате анализа состояния существующей системы теплоснабжения МО «Шеговарское» можно сделать вывод, что теплоэнергетическое хозяйство

находится в удовлетворительном состоянии. Однако имеющиеся на котельных избыточная мощность и значительный процент износа оборудования приводят к неэффективному потреблению энергоресурсов в процессе производства и передачи тепловой энергии, к дополнительному расходу топливно- энергетических ресурсов и не позволяют оказывать услуги теплоснабжения с требуемым уровнем качества и надежности.

Передача тепловой энергии от котельных к потребителям осуществляется по системе существующих тепловых сетей. Изоляция тепловых сетей на некоторых участках имеет повреждения, вследствие чего отдельные участки трубопровода подвержены повышенной коррозии. Это приводит к росту потерь отпускаемой тепловой энергии в сетях, низкой эффективности транспортировки тепловой энергии из-за значительного уровня тепловых потерь при передаче тепловой энергии, а в дальнейшем снижает надежность работы всей системы теплоснабжения.

Схемой теплоснабжения предлагается:

- 1) модернизация существующих котельных с заменой тепломеханического оборудования с целью повышения эффективности работы систем теплоснабжения и качества оказываемых услуг, в том числе надежности и стабильности подачи тепловой энергии потребителям;
- 2) замена изношенных участков теплотрасс на трубы в пенополиуретановой изоляции;
- 3) установка коммерческих приборов учета и контроля тепловой энергии на объектах теплоснабжения.

Реализация этих мероприятий позволит сократить эксплуатационные расходы на производство тепловой энергии, обеспечить надежность и качество теплоснабжения объектов бюджетной сферы и жилого фонда.

Требуемые затраты:

- на техническое перевооружение котельных 2,318 млн. рублей,
- на замену существующих участков тепловых сетей 2,273 млн. рублей,
- на установку приборов учета и контроля

на объектах теплоснабжения - 0,8 млн.рублей,

- на установку химической водоподготовки

для системы теплоснабжения - 0,44 млн. рублей,

в том числе по периодам реализации:

- 2015-2020 г.г. -2,937 млн. рублей,

на перспективу до 2030 г.
 - 2,894 млн. рублей.

Централизованное теплоснабжение для объектов новой застройки удаленных от централизованных систем теплоснабжения предусматривается на период 2015-2030 г.г. от автономных систем поквартирного отопления.

При необходимости проводить ежегодную актуализацию разработанной схемы теплоснабжения, а также её корректировку один раз в пять лет.

КНИГА II

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ШЕГОВАРСКОЕ» ШЕНКУРСКОГО РАЙОНА АРХАНГЕЛЬСКОЙ ОБЛАСТИ НА ПЕРИОД С 2015 ГОДА ПО 2030 ГОД (актуализация на 2017 год)

СХЕМА ТЕПЛОСНАБЖЕНИЯ, РАЗВИТИЕ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ, БАЛАНСЫ ТЕПЛОВОЙ МОЩНОСТИ ЭНЕРГОИСТОЧНИКОВ, ТЕПЛОВЫЕ СЕТИ, ТЕПЛОВЫЕ НАГРУЗКИ, ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ, СЦЕНАРИЙ РАЗВИТИЯ, РАСПРЕДЕЛЕНИЕ ТЕПЛОВОЙ НАГРУЗКИ МЕЖДУ ЭНЕРГОИСТОЧНИКАМИ, РЕКОНСТРУКЦИЯ ТЕПЛОИСТОЧНИКОВ, РЕКОНСТРУКЦИЯ ТЕПЛОВЫХ СЕТЕЙ.

Объектом исследования являются системы централизованного теплоснабжения МО «Шеговарское».

Целью работы является получение достоверных сведений об объемах потребления тепловой энергии, анализ использования технологического оборудования и теплосетевых объектов, выявление возможности оптимизации работы систем теплоснабжения, определение сценария развития систем централизованного теплоснабжения и разработка схемы теплоснабжения МО «Шеговарское».

Разработка системы теплоснабжения выполнена согласно Постановлению Правительства Российской Федерации от 22 февраля 2012 г. №154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения».

Анализ положения в сфере производства и передачи тепловой энергии основан на известных в литературе инженерных методиках и нормативных документах.

В результате анализа выявлен потенциал энергосбережения, для реализации централизованного предложены сценарии развития систем теплоснабжения, реализация которых энергетическую позволит повысить эффективность системы теплоснабжения. Дана оценка экономической целесообразности внедрения предложенных мероприятий. По результатам работы разработана схема теплоснабжения МО «Шеговарское» на период с 2015 год по 2030 год.

Термины и определения

В настоящей работе использовались следующие термины и определения:

- зона действия системы теплоснабжения территория поселения, городского округа, или её часть, границы которой устанавливаются по наиболее удаленным точкам подключения потребителей к тепловым сетям, входящим в систему теплоснабжения;
- *зона действия источника тепловой энергии* территория поселения, городского округа, или её часть, границы которой устанавливаются закрытыми секционирующими задвижками тепловой сети системы теплоснабжения;
- мощность источника тепловой энергии установленная сумма номинальных тепловых мощностей принятых по акту ввода в эксплуатацию оборудования, предназначенного для отпуска тепловой энергии потребителям и на собственные нужды;
- мощность источника тепловой энергии располагаемая величина, равная установленной мощности источника тепловой энергии за вычетом мощности, не реализуемой по техническим причинам; к ограничениям по техническим

причинам относятся те, которые связаны со снижением тепловой мощности оборудования в результате эксплуатации на продленном техническом ресурсе;

- мощность источника тепловой энергии нетто величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой нагрузки собственных и хозяйственных нужд;
- *теплосетевые объекты* сооружения и оборудование на тепловых сетях обеспечивающие транспорт тепловой энергии от источника до потребителей тепловой энергии;
- элемент территориального деления территория поселения, или её часть, установленная по границам административно-территориальных единиц;
- *расчетный элемент территориального деления* территория города, принятая для разработки схемы теплоснабжения на весь срок реализации схемы теплоснабжения.

2.1. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения

В целом теплоснабжение населённых пунктов МО «Шеговарское» - децентрализованное.

Теплоснабжение жилых одно-двух квартирных домов преимущественно - печное, топливо - дрова.

Общественные и административные здания, а также часть жилищного фонда с. Шеговары и п. Красная Горка снабжаются теплом централизованно от отдельностоящих твердотопливных котельных, остальные здания, не подключенные к централизованному теплоснабжению, отапливаются от собственных источников теплоты.

Жители остальных населенных пунктов муниципального образования отапливаются от индивидуальных тепловых агрегатов, используя различные виды топлива, преимущественно - печное, топливо - дрова.

Мелкие общественные и административные здания, а также производственные здания предприятий местной промышленности снабжаются теплом от собственных источников теплоты.

Всего на территории муниципального образования расположено 2 котельные, работающие на древесном топливе.

Основным поставщиком тепловой энергии в поселении является ООО УК «Весна», основным видом деятельности которой является производство тепловой энергии котельными.

2.1.1. Функциональная структура системы теплоснабжения

Расчетная температура наружного воздуха для проектирования системы теплоснабжения - минус 34 °C, средняя за отопительный период - минус 5,3 °C, скорость ветра - 4,5 м/с. Длительность отопительного периода - 237 день (5688 часов).

Централизованное теплоснабжение имеется:

- 1) в с. Шеговары и осуществляется от котельной установленной мощностью 1,6 Гкал/ч.
- 2) в п. Красная Горка, осуществляется от котельной установленной мощностью 1,023 Гкал/ч.

Источники теплоснабжения находится в собственности муниципального образования «Шеговарское», эксплуатируются ООО УК «Весна».

Тепловые сети - подземные и надземные, выполнены в непроходных каналах из различных материалов (деревянные короба, ж/бетон) или проложены бесканально.

Общая протяженность трубопроводов тепловых сетей составляет (в 2-х трубном исчислении) -1 145,61 м, средневзвешенный диаметр - 80 мм.

Суммарная нагрузка потребителей составляет 0,88 Гкал/ч.

2.1.2. Источники тепловой энергии

1. Котельная с. Шеговары

Расположена по адресу: с. Шеговары, ул. Центральная, д.68а

Здание котельной кирпичное. Находится в удовлетворительном состоянии.

Вид топлива - дрова.

Год ввода в эксплуатацию котельной -1977 г.

Расчетные параметры теплоносителя на котельной - 95 - 70 °C.

В котельной установлены водогрейные котлы КВм-0,93КД -2 шт. КПД котлов составляет 72%.

Номинальная часовая паспортная теплопроизводительность котлов составляет 0,8 Гкал/час.

Установленная мощность котельной составляет $Q_{pacu}^{yct}=1.6 \Gamma \text{кал/час}$.

Для перекачки теплоносителя по тепловой сети в котельной установлено 2 сетевых насоса К 80-65-160, один из которых является резервным.

Химводоподготовка, вентиляторы воздуха и приборы учета в котельной отсутствуют.

Состав и технические характеристики основного оборудования источника тепловой энергии представлены в таблице 2.1.1.

Количество подключенных потребителей - 4.

Системы горячего водоснабжения - нет.

Расчетная тепловая нагрузка составляет - 0,58 Гкал/час.

Потребители подключены по зависимой схеме. В соответствии со СНиП 41-02-2003 регулирование отпуска тепла от источника тепловой энергии предусматривается качественное, согласно графику изменения температуры воды, в зависимости от температуры наружного воздуха.

Информация о производстве и потреблении тепловой энергии котельной с. Шеговары, отпускающей тепловую энергию населению и социальной сфере представлена в таблице 2.1.3.

Учет тепла, отпущенного в тепловые сети, ведется расчетным способам согласно нормативам. Приборы учета тепловой энергии на вводах потребителей отсутствуют.

Предписания надзорных органов по ограничению эксплуатации источника тепловой энергии отсутствуют.

Общая протяженность тепловых сетей (в 2-х трубном исчислении) — 763,41 м.

Таблица 2.1.1.

				таолица 2.1.1.
Наименование котельной	Установленная мощность, Гкал/час	Подключенная нагрузка, Гкал/ч	Максимальный коэффициент загрузки	Вид топлива
Котельная с. Шеговары, ул. Центральная, 68а	1,6	0,58	0,2437	дрова
Котлы				
Тип, м	арка котла	Год установки котлов	Теплопроизводи- тельность котла, Гкал/час	Кол-во котлов
КВм	i-0,93КД	2010	0,8	2
Насосы сетевые				
Марка насоса, производительность,м3/час напор, м.вод.ст.		Эл/двигатель, кВт; обороты/мин		Кол-во насосов
K 80-65-160; (D=E02/ U=22	N=7,5 кВт; п	2	
1, 00 00 100,	2-50 M3/4; П−3∠M	14-7,0 KB1, II		
Дымососы	4-20 M3/4; H-32M	N-7,5 KB1, II		
Дымососы	Іарка,	Эл/двигатель, кВ		Кол-во
Дымососы М производите			г; обороты/мин	Кол-во 2
Дымососы М производите	Іарка, ельность,м3/час	Эл/двигатель, кВт	г; обороты/мин	
Дымососы	Іарка, ельность,м3/час	Эл/двигатель, кВт N=3кВТ; п=1	г; обороты/мин	

Данные о потребителях, присоединенных к котельной с. Шеговары

Таблица 2.1.2

No	НАИМЕНОВАНИЕ ПОТРЕБИТЕЛЯ,	ОБЪЕМ	ТЕПЛОВАЯ	НАГРУЗКА
П/П	АДРЕС	ЗДАНИЯ,	Q от.,	Q гвс.,
		КУБ.М.	Гкал/ч	Гкал/ч
1	Население, с.Шеговары,	2158	0,07	
	ул.Центральная, д.66			
	Всего население:	2158	0,07	
2	Шеговарская амбулатория, с.Шеговары,	1236	0,05	
	ул.Мира, д.20			
3	МБОУ Шеговарская СОШ, ул. Мира,	9048	0,17	
	д.12			
4	Детский сад «Ладушки» (филиал МБОУ	4673	0,10	
	Шеговарская СОШ)			
	Волго опранизации:	14957	0,32	
	Всего организации:	1493/	0,32	
	Итого по с. Шеговары:		0,39	

2. Котельная п. Красная Горка

Расположена по адресу: п. Красная Горка, ул. Садовая, д.1

Здание котельной кирпичное. Находится в удовлетворительном состоянии.

Вид топлива - дрова.

Год ввода в эксплуатацию котельной -1987 г.

Расчетные параметры теплоносителя на котельной - 95 - 70 °C.

В котельной установлены водогрейные котлы КВм-0,93КД-1 шт., КПД составляет -72% и Универсал-6, КПД составляет 60%.

Номинальная часовая паспортная теплопроизводительность котлов КВм-0,93КД составляет 0,8 Гкал/час. и Универсал-6 0.223Гкал/час.

Установленная мощность котельной составляет $Q^{\text{уст.}}_{pacv.}$ =1,023 Гкал/час.

Для перекачки теплоносителя по тепловой сети в котельной установлено 2 сетевых насоса - КМ-80-65-160 СУЗ, один из которых является резервным.

Химводоподготовка, вентиляторы воздуха и приборы учета в котельной отсутствуют.

Состав и технические характеристики основного оборудования источника тепловой энергии представлены в таблице 2.1.4.

Количество подключенных потребителей - 8.

Системы горячего водоснабжения - нет.

Расчетная тепловая нагрузка составляет - 0,3 Гкал/час.

Потребители подключены по зависимой схеме. В соответствии со СНиП 41-02-2003 регулирование отпуска тепла от источника тепловой энергии предусматривается качественное, согласно графику изменения температуры воды, в зависимости от температуры наружного воздуха.

Информация о производстве и потреблении тепловой энергии котельной п. Красная Горка, отпускающей тепловую энергию населению и социальной сфере представлена в таблице 2.1.3.

Учет тепла, отпущенного в тепловые сети, ведется расчетным способам согласно нормативам. Приборы учета тепловой энергии на вводах потребителей отсутствуют.

Предписания надзорных органов по ограничению эксплуатации источника тепловой энергии отсутствуют.

Общая протяженность тепловых сетей (в 2-х трубном исчислении) - 382,2 м.

Таблица 2.1.4.

	Установленная мощность, Гкал/час	Подключенная нагрузка, Гкал/ч	Максимальный коэффициент загрузки	Вид топлива
Котельная П. Красная Горка, ул. Садовая, 1	1,023	0,313	0,293	дрова

Котлы			
Тип, марка котла	Год установки котлов	Теплопроизводи- тельность котла, Гкал/час	Кол-во котлов
КВм-0,93КД	1988г.	0,8	1
Универсал-6 Насосы сетевые		0,223	1
	Эп/пригатоль иВ-	т. одоротгимин	Кол-во
Марка насоса, производительность,м3/час напор, м.вод.ст.	Эл/двигатель, кВт; обороты/мин		насосов
КМ-80-65-160 СУ3; Q=50 м3/ч; H=32м	N=5,5 кВт; п	2	
Дымовая труба			
Диаметр, мм, высота, м	Материал		Кол-во
d 600 мм, h=16м,	сталь		1

Данные о потребителях, присоединенных к котельной п. Красная Горка

Таблица 2.1.5.

№	НАИМЕНОВАНИЕ ПОТРЕБИТЕЛЯ, АДРЕС	ОБЪЕМ ЗДАНИЯ,	ТЕПЛОВАЯ	НАГРУЗКА
Π/Π		КУБ.М.	Q от., Гкал/ч	Q гвс., Гкал/ч
1	жилой дом, п.Красная Горка, ул.Черемушки, д.1	2391	0,07	
2	жилой дом, п.Красная Горка, ул.Черемушки, д.2	1627	0,05	
3	жилой дом, п.Красная Горка, ул.Набережная, д.1	343	0,02	
4	жилой дом, п.Красная Горка, ул.Набережная, д.2	459	0,02	
5	жилой дом, п.Красная Горка, ул.Садовая, д.2	323	0,02	
6	жилой дом, п.Красная Горка, ул.Садовая, д.3	336	0,02	
7	жилой дом, п.Красная Горка, ул.Садовая, д.4	351	0,02	
8	жилой дом, п.Красная Горка, ул.Садовая, д.5	365	0,02	
	Всего население:	6195	0,24	
	Итого по п. Красная Горка:		0,24	

Информация о производстве и потреблении тепловой энергии котельных муниципального образования «Шеговарское», отпускающей тепловую энергию населению и социальной сфере

Таблица 2.1.3.

Производитель тепловой	Установ- ленная	Подключенная		Кол-во потреби-			Производ	ство тепловой	энергии, Гкал	I			Вид потребляемо
энергии	мощность, Гкал/час	нагрузка, Гкал/час	загрузки мощности, %	телей	Выработка	Собственное потребление	Полезный отпуск	в т.ч. населе- нию	в т.ч. бюджетам	в т.ч. прочие	Потери	% потерь	го топлива
Котельная с. Шеговары	1,6	0,39	24,4	4	1005,05	23,41	981,64	161,02	714,62	-	106	10,8	дрова
Котельная п. Красная Горка	. 1,023	0,313	29,3	8	571,15	13,31	557,84	507,84			50	8,96	дрова

2.1.3. Тепловые сети, сооружения на них и тепловые пункты

Тепловые сети служат для подачи теплоносителя от источников теплоты к потребителям.

Тепловые сети находятся в собственности муниципального образования «Шеговарское», эксплуатируется ООО УК «Весна».

Система теплоснабжения двухтрубная. Схема сети теплоснабжения - тупиковая. Для транспортировки теплоносителя используются стальные изолированные трубопроводы. В качестве теплоносителя системы теплоснабжения используется вода.

Способ прокладки тепловых сетей:

- подземные в непроходных железобетонных лотках;
- надземные на опорах;
- подземные в траншее.

Тепловые сети выполнены из стальных трубопроводов диаметром от 50 до 100 мм, средневзвешенный диаметр - 80 мм, общей протяженностью 1,14561 км, подземной и надземной прокладкой с изолирующим минераловатным материалом и покрытием из рубероида. Срок эксплуатации от 37 до 5 лет. Износ сетей составляет 60%, требуется замена изношенных участков.

На тепловых сетях от котельной с. Шеговары предусмотрены 2 смотровых колодца для установки отключающих устройств, а также 2 компенсатора. Трубопроводы выполнены из стальных труб, изолированы в основном стекловатой с покрытием из рубероида.

Расчетные тепловые потери в сетях, принятые в тарифе, составляют 8,96 - 10,8 %, фактические тепловые потери не определялись.

Основные данные по тепловым сетям системы теплоснабжения с.Шеговары

Таблица 2.1.6.

		1 иолици 2.1.0.	
НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ	КОТЕЛЬНАЯ С.ШЕГОВАРЫ УЛ. ЦЕНТРАЛЬНАЯ, 68А	КОТЕЛЬНАЯ П. КРАСНАЯ ГОРКА, УЛ. САДОВАЯ, 1	
	,	, , , ,	
Год ввода в эксплуатацию	1978/ 2010/2016	1987	
Протяженность существующих	0,76341	0,3822	
тепловых сетей в двухтрубном			
исчислении, км			
Средневзвешенный диаметр тепловой	80	70	
сети, мм			
Материальная характеристика, м	133,73	58,09	
Процент износа сетей, %	60	60	
Расчетные тепловые потери, %	7,8	8,96	
принятые в тарифе			

Характеристики тепловых сетей от котельных МО «Шеговарское»

Таблица 2.1.7.

						1 аолица 2.1./.		
ДИАМЕТР,	ДЛИНА,	В	Mx	СПОСОБ	МАТЕРИАЛ	ГОД ВВОДА В		
MM	M			ПРОКЛАДКИ	изоляции	ЭКСПЛУАТАЦИЮ		
Котельная	с. Шеговарн	ы, ул.	Централь	ная, 68а				
100	93	1,2	20,09	подземная	стекловата,	1978		
					рубероид			
100	60	1,25	13,68	надземная	стекловата,	1978		
					рубероид			
80	205	1,2	36,49	подземная	ППУ	2016		
80	135,7	1,2	15,47	подземная	ППУ	2016		
80	269,71	1,2	48,0	подземная	утеплитель	2010		
	763,41		133,73					
Котельная	Котельная п. Красная Горка, ул. Садовая, 1							
70	382,2	1,25	58,09	надземная	опилки	1987		
	382,2		58,09					
						II .		

Нормативные и фактические тепловые потери в сетях представлены в таблице 2.1.8.

Тепловые потери в системах теплоснабжения

Таблина 2.1.8.

	тиолици 2.1.0.
ИСТОЧНИК ТЕПЛОСНАБЖЕНИЯ	ПОТЕРИ ТЕПЛОВОЙ ЭНЕРГИИ, ГКАЛ
Котельная с. Шеговары, ул. Центральная, 68а	263,8
Котельная п. Красная Горка, ул. Садовая, 1	263,8

Потери тепловой мощности в тепловых сетях приведены в таблице 2.1.9.

Потери тепловой мощности в системах теплоснабжения

Таблица 2.1.9.

		Таолица 2.1.9.	
ИСТОЧНИК ТЕПЛОСНАБЖЕНИЯ	ПОТЕРИ ТЕПЛОВОЙ ЭНЕРГИИ, ГКАЛ/Ч		
	Нормативные	Фактические	
Котельная с. Шеговары, ул. Центральная, 68а	0,128	0,1728	
Котельная п. Красная Горка, ул. Садовая, 1	0,065	0,073	

Расчетный температурный график системы теплоснабжения представлен в таблице 2.1.10.

График зависимости температуры теплоносителя от среднесуточной температуры наружного воздуха, составлен для температуры внутреннего воздуха в помещении 20 °C

		T	Таблица 2.1.10.
tнв	t _{1p}	t_2	Расчетный перепад температур
-34	95,0	70,0	25,0
-33	93,9	69,4	24,5
-32	92,8	68,7	24,1
-31	91,6	68,0	23,6
-30	90,5	67,4	23,1
-29	89,4	66,7	22,7
-28	88,3	66,1	22,2
-27	87,1	65,3	21,8
-26	86,0	64,7	21,3
-25	84,8	64,0	20,8
-24	83,7	63,3	20,4
-23	82,5	62,6	19,9
-22	81,4	62,0	19,4
-21	80,2	61,2	19,0
-20	79,0	60,5	18,5
-19	77,8	59,7	18,1
-18	76,6	59,0	17,6
-17	75,5	58,4	17,1
-16	74,3	57,6	16,7
-15	73,1	56,9	16,2
-14	71,8	56,1	15,7
-13	70,6	55,3	15,3
-12	69,4	54,6	14,8
-11	68,2	53,8	14,4
-10	66,9	53,0	13,9
-9	65,7	52,3	13,4
-8	64,4	51,4	13,0
-7	63,2	50,7	12,5
-6	61,9	49,9	12,0
-5	60,6	49,0	11,6

-4	59,3	48,2	11,1
-3	58,0	47,4	10,6
-2	56,7	46,5	10,2
-1	55,4	45,7	9,7
0	54,0	44,7	9,3
1	52,7	43,9	8,8
2	51,3	43,0	8,3
3	49,9	42,0	7,9
4	48,5	41,1	7,4
5	47,1	40,2	6,9
6	45,6	39,1	6,5
7	44,2	38,2	6,0
8	42,7	37,1	5,6

Расчетный температурный график представлен на рисунке 2.1.1.

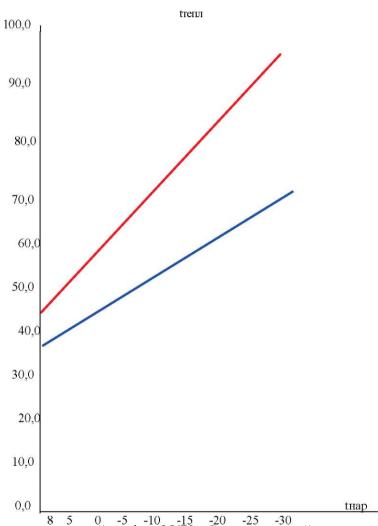


Рисунок 2.1.1. температурный график 95/70 оС, для закрытой системы отопления

В соответствии со СНиП 41-02-2003 регулирование отпуска тепла от источников тепловой энергии предусматривается качественное, согласно графику изменения температуры воды, в зависимости от температуры наружного воздуха.

Системы отопления жилых и общественных зданий проектируются и эксплуатируются исходя из внутреннего расчетного температурного графика $95/70~^{\circ}$ C.

Оптимальный температурный график отпуска тепловой энергии для каждого источника тепловой энергии в системе теплоснабжения в соответствии с действующим законодательством разрабатывается в процессе проведения энергетического обследования источника тепловой энергии, тепловых сетей, потребителей тепловой энергии.

На магистральных тепловых сетях насосные станции отсутствуют. Данные по тепловым пунктам отсутствуют. Статистика отказов тепловых сетей и сетей горячего водоснабжения (аварий, инцидентов) за последние пять лет представлена в таблице 2.1.11.

Среднее время, затраченное на восстановление работоспособности тепловых сетей за последние пять лет не превышает 40 часов.

Диагностика тепловых сетей за последние пять лет не проводилась.

Ежегодно проводится испытание тепловых сетей на плотность и прочность давлением $P=10.0~\rm kr^*c/cm$.

Фактическое состояние тепловых сетей местами неудовлетворительное, что связано со значительным сроком их эксплуатации. Планово- предупредительные ремонты проводятся в межотопительный период.

Предписания надзорных органов по ограничению дальнейшей эксплуатации участков тепловой сети отсутствуют.

Статистика отказов тепловых сетей

Таблица 2.1.11.

		1 a031	ица 2.1.11.
ПОКАЗАТЕЛЬ	2009	2011	2013
количество аварий на системах теплоснабжения (единиц	0,5	0,5	0,5
на км)			
количество потребителей жилых домов и	0	0	0
производственных/офисных зданий, затронутых			
ограничениями подачи тепловой энергии			
количество часов (суммарно за календарный год)	0	0	0
отклонения от нормативной температуры воздуха по вине			
регулируемой организации в жилых и нежилых			
отапливаемых помещениях			

Автоматизация систем управления тепловых пунктов и насосных станций в системах централизованного теплоснабжения МО «Шеговарское» отсутствует. Защита тепловых сетей от повышения давления в системах централизованного теплоснабжения не предусмотрена.

Распределение тепловых сетей по диаметру трубопроводов и их материальные характеристики представлены на рисунке 2.1.2 и в таблице 2.1.12 соответственно.

Согласно таблице 2.1.11. наибольшую материальную характеристику (84,49 м2) имеют сети диаметром Ду 80 мм.

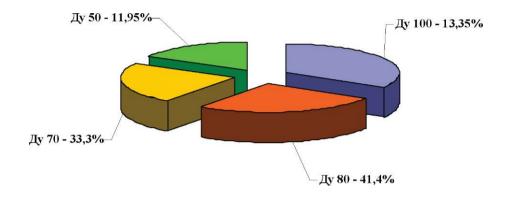


Рисунок 2.1.2. Распределение тепловых сетей МО «Шеговарское» по диаметру трубопроводов

Рисунок 2.1.2 показывает, что наибольшую протяженность имеют тепловые сети диаметром Ду 80 мм.

Материальная характеристика тепловых сетей МО «Шеговарское»

Таблица 2.1.12.

УСЛОВНЫЙ	ДЛИНА, м	МАТЕРИАЛЬНАЯ	МАТЕРИАЛЬНАЯ
ДИАМЕТР,		ХАРАКТЕРИСТИКА, м2	ХАРАКТЕРИСТИКА,
Ду, мм			%
100	153,0	33,77	17,6%
80	474,71	84,49	44,06%
70	382,2	58,09	30,28%
50	135,7	15,47	8,06%
Всего:	1145,61	191,82	100%

Система теплоснабжения на нужды отопления - закрытая, потребители подключены по зависимой схеме, в узлах ввода регулирующие устройства отсутствуют.

Распределение сетей теплоснабжения по типу прокладки приведено на

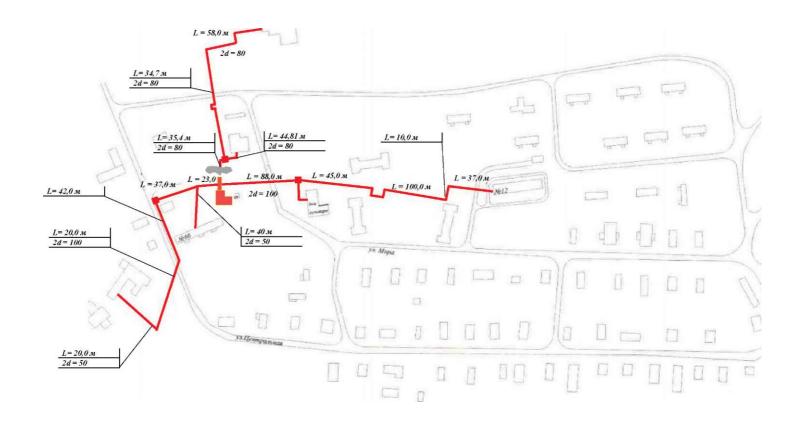


Рисунок 2.1.3. Распределение тепловых сетей MO «Шеговарское» по типу прокладки

Из рисунка 2.1.3. видно, что прокладка большей части трубопроводов (38,51 %) произведена надземным способом.

Изоляция тепловых сетей выполнена из минераловатных матов прошивных марки 100 с покрытием из рубероида с незначительным разрушением покровного и основных слоев.

Схемы участков тепловых сетей от котельных МО «Шеговарское» представлены на рис. 2.1.4. - 2.1.5.

2.1.4. Схема участков тепловых сетей с. Шеговары

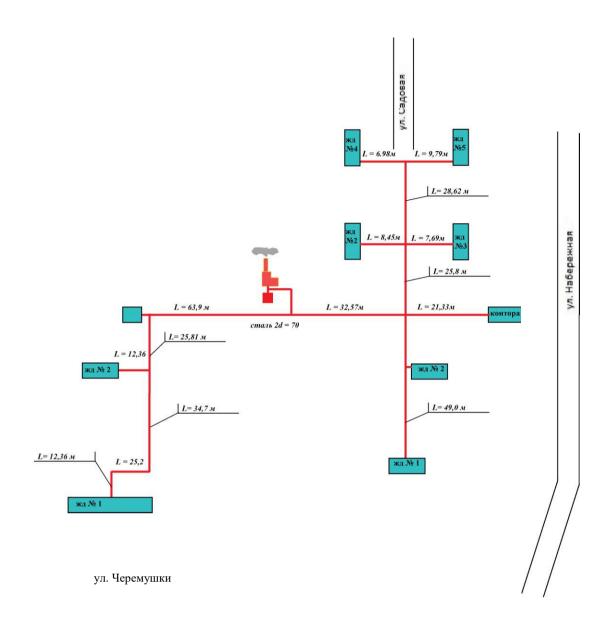


Рисунок 2.1.5. Схема участков тепловых сетей п. Красная Горка

2.1.4. Зоны действия источников тепловой энергии

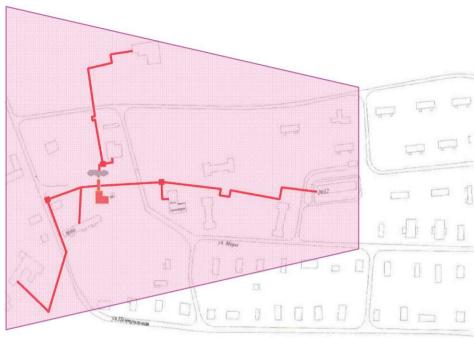


Рисунок 2.1.6. Зона действия котельной с. Шеговары

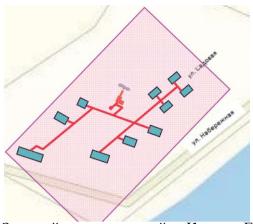


Рисунок 2.1.7. Зона действия котельной п. Красная Горка

Теплоснабжение потребителей, находящихся вне зоны действия котельной осуществляется от индивидуальных источников тепловой энергии.

2.1.4.1. Радиус эффективного теплоснабжения

Среди основных мероприятий по энергосбережению в системах теплоснабжения можно выделить оптимизацию систем теплоснабжения в районе с учетом эффективного радиуса теплоснабжения.

Передача тепловой энергии на большие расстояния является экономически неэффективной.

Радиус эффективного теплоснабжения позволяет определить условия, при которых подключение новых или увеличивающих тепловую нагрузку теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе на единицу тепловой мощности, определяемой для зоны действия каждого источника тепловой энергии.

Радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в

системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

Оптимальный радиус теплоснабжения предлагается определять из условия минимума выражения для «удельных стоимостей сооружения тепловых сетей и источника»:

$$S=A+Z^min (pyб./\Gamma кал/ч),$$

где A - удельная стоимость сооружения тепловой сети, руб./Гкал/ч; Z - удельная стоимость сооружения котельной, руб./Гкал/ч.

Аналитическое выражение для оптимального радиуса теплоснабжения предложено в следующем виде, км:

$$Ranm = (140/S^{0,4}) \phi^{0,4} (1/B^{\circ 1}) (pacuem. nepenad memn./\Pi)^{0,15}$$
,

где B - среднее число абонентов на 1 км_2 ;

s - удельная стоимость материальной характеристики тепловой сети, руб./м2;

 Π - теплоплотность района, Гкал/чкм2;

 $\it AT$ - расчетный перепад температур теплоносителя в тепловой сети, ${}_{\rm o}{\rm C};$

 ϕ - поправочный коэффициент, зависящий от постоянной части расходов на сооружение ТЭЦ.

При этом предложено некоторое значение предельного радиуса действия тепловых сетей, которое определяется из соотношения, км:

$$Rnpeд = [(p-C)/1, 2K]^{2,5}$$

где Епред - предельный радиус действия тепловой сети, км;

- p разница себестоимости тепла, выработанного на ТЭЦ и в индивидуальных котельных абонентов, руб./Гкал;
- C переменная часть удельных эксплуатационных расходов на транспорт тепла, руб./Гкал;
- K постоянная часть удельных эксплуатационных расходов на транспорт тепла при радиусе действия тепловой сети, равном 1 км, руб./Гкалкм.

Результаты расчета радиуса эффективного теплоснабжения системы теплоснабжения приведены в таблице.

Радиус эффективного теплоснабжения источника тепловой энергии

				140.	пица 2.1.15.
ИСТОЧНИК	СУММАРНАЯ	Π,	Дт, оС	В, аб./км2	К опт,
ТЕПЛОСНАБЖЕНИЯ	ПРИСОЕДИ-	Гкал/(чкм2)			KM
	НЕННАЯ				
	ТЕПЛОВАЯ				
	НАГРУЗКА,				
	Гкал/ч				
Котельная с. Шеговары, ул.	0,39	0,325	25	17,16	1,03
Центральная, 68а					
Votati nag ti Vnagnag Conta	0,24	0,282	25	82,12	0,85
Котельная п. Красная Горка, ул. Садовая, 1	0,24	0,202	23	02,12	0,03
,,,,,					

2.1.5. Тепловые нагрузки потребителей тепловой энергии, групп потребителей тепловой энергии в зонах действия источника тепловой энергии

Тепловые нагрузки по группам потребителей тепловой энергии представлены в таблице 2.1.13.

Нагрузки групп потребителей

Таблица 2.1.13

				<u>гаолица 2.1.13.</u>
НАИМЕНОВАНИЕ КОТЕЛЬНОЙ	ЖИЛЫЕ ЗДАНИЯ ГКАЛ/Ч	УЧРЕЖДЕНИЯ	ПРОЧИЕ ПОТРЕБИТЕЛИ ГКАЛ/Ч	ВСЕГО
		ГКАЛ/Ч		ГКАЛ/Ч
Котельная с. Шеговары, ул.	0,07	0,32	-	0,39
Центральная, 68а				
Котельная п. Красная	0,24	-	-	0,24
Горка, ул. Садовая, 1				

Суммарные нагрузки на источники тепловой энергии приведены в таблице 2.1.14.

Нагрузки на источники тепловой энергии

Таблица 2.1.14.

			1 аолица 2.1.17.
НАИМЕНОВАНИЕ	НАГРУЗКА НА	ПОТЕРИ ТЕПЛОВОЙ	СУММАРНАЯ
КОТЕЛЬНОЙ	ОТОПЛЕНИЕ, ГКАЛ/Ч	МОЩНОСТИ В	ПРИСОЕДИНЕННАЯ
		ТЕПЛОВЫХ СЕТЯХ,	НАГРУЗКА, ГКАЛ/Ч
		ГКАЛ/Ч	
Котельная с. Шеговары, ул.	0,39	0,1728	0,5628
Центральная, 68а			
Котельная п. Красная	0,24	0,073	0,313
Горка, ул. Садовая, 1			

2.1.6. Балансы тепловой мощности и тепловой нагрузки в зонах действия источников тепловой энергии

Баланс установленной, располагаемой тепловой мощности и тепловой мощности нетто, потерь тепловой мощности в тепловых сетях и присоединенной тепловой нагрузки к источнику тепловой энергии приведен в таблице 2.1.15.

Баланс тепловой мощности источников тепловой энергии

Таблица 2.1.15.

					1 аолица 2.1.15.
НАИМЕНОВА-НИЕ	УСТАНОВЛЕН-	РАСПОЛАГАЕ-	ТЕПЛОВАЯ	ПОТЕРИ	НАГРУЗКА
КОТЕЛЬНОЙ	НАЯ ТЕПЛОВАЯ	МАЯ ТЕПЛОВАЯ	МОЩНОСТЬ	ТЕПЛОВОЙ	ПОТРЕБИТЕЛЕЙ,
	мощность,	МОЩНОСТЬ С	НЕТТО,	мощности в	ГКАЛ/Ч
	ГКАЛ/Ч	УЧЕТОМ КПД	ГКАЛ/Ч	ТЕПЛОВЫХ	
		ГКАЛ/Ч		СЕТЯХ,	
				ГКАЛ/Ч	
Котельная с	. 1,6	0,928	0,906	0,1728	0,39
Шеговары, ул					
Центральная, 68а					
Котельная п	. 1,023	0,491	0,48	0,073	0,24
Красная Горка, ул					
Садовая, 1					

Резервы и дефициты тепловой мощности нетто показаны в таблице 2.1.16.

Резервы (дефициты) тепловой мощности источников теплоснабжения

Таблица 2.1.16.

			1 иолици 2.1.10.
НАИМЕНОВАНИЕ	ТЕПЛОВАЯ	ПРИСОЕДИНЕННАЯ	РЕЗЕРВ/ДЕФИЦИТ
КОТЕЛЬНОЙ	МОЩНОСТЬ НЕТТО,	ТЕПЛОВАЯ	ТЕПЛОВОЙ
	ГКАЛ/Ч	НАГРУЗКА,	МОЩНОСТИ, ГКАЛ/Ч
		ГКАЛ/Ч	
Котельная с. Шеговары, ул.	0,906	0,39	0,516
Центральная, 68а			
Котельная п. Красная	0,48	0,24	0,24
Горка, ул. Садовая, 1			

Мощность существующих котельных обеспечивает потребность потребителей тепла МО «Шеговарское».

2.1.7. Балансы теплоносителя

Водоподготовительное оборудование на котельных МО «Шеговарское» отсутствует, в результате чего уменьшается срок эксплуатации котельного оборудования и тепловых сетей.

Потери теплоносителя обосновываются только аварийными участками теплосети. Разбор теплоносителя потребителями отсутствует. Таким образом, при безаварийном режиме работы количество теплоносителя возвращенного равно количеству теплоносителя отпущенного в тепловую сеть.

Среднегодовая утечка теплоносителя (м3/ч) из водяных тепловых сетей должна быть не более 0,25 % среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо ОТ схемы присоединения исключением (3a водоснабжения, систем горячего присоединенных через водоподогреватели). Сезонная норма утечки устанавливается пределах теплоносителя В среднегодового значения. Технологические потери теплоносителя включают количество воды на наполнение трубопроводов и систем теплопотребления при их плановом ремонте и подключении новых участков сети и потребителей, промывку, проведение регламентных испытаний трубопроводов дезинфекцию, оборудования тепловых сетей [СП 124.13330.2012].

Для компенсации этих расчетных технологических потерь (затрат) сетевой воды, необходима дополнительная производительность водоподготовительной установки и соответствующего оборудования (свыше 0,25~% от объема теплосети), которая зависит от интенсивности заполнения трубопроводов. Во избежание гидравлических ударов и лучшего удаления воздуха из трубопроводов максимальный часовой расход воды ($G_{\rm M}$) при заполнении трубопроводов тепловой сети с условным диаметром ($D_{\rm y}$) не должен превышать значений, приведенных в таблице. При этом скорость заполнения тепловой сети должна быть увязана с производительностью

источника подпитки и может быть ниже указанных расходов [СП 124.13330.2012].

Максимальный часовой расход воды при заполнении трубопроводов тепловой сети

Таблина 2.1.17.

Ду,мм	_{Gм, м3/ч}	Ду,мм	_{Gм} , М ₃ /ч	Ду,мм	_{Gм} , М ₃ /ч	Ду,мм	_{Gм} , М ₃ /ч
100	10	350	50	600	150	1000	350
150	15	400	65	700	200	1100	400
250	25	500	85	800	250	1200	500

В результате для систем теплоснабжения максимальный часовой расход подпиточной воды G_3 , M^3/Ψ [СП 124.13330.2012].

$$Gs = 0.0025 \cdot V_{mc} + G_{M}^{\wedge}$$

где G_M - расход воды на заполнение наибольшего по диаметру секционированного участка тепловой сети, принимаемый по таблице 2.7.2., либо ниже при условии такого согласования; - V_{mc} - объем воды в системах теплоснабжения, M^3 .

При отсутствии данных по фактическим объемам воды допускается принимать его равным 65 м 3 на 0,86 Гкал расчетной тепловой нагрузки при закрытой системе теплоснабжения, 70 м 3 на 0,86 Гкал - при открытой системе теплоснабжения, 30 м 3 на 0,86 Гкал средней нагрузки - для отдельных сетей горячего водоснабжения.

2.1.8. Топливные балансы источников тепловой энергии и система обеспечения топливом

Топливом для котельных МО «Шеговарское» являются дрова. Топливные балансы источников за 2014 год приведены в таблице 2.1.18.

Топливные балансы источников тепловой энергии за 2014 год

Таблица 2.1.18.

НАИМЕНОВАНИЕ	ВЫРАБОТКА	УДЕЛЬНЫЙ	ПОТРЕБЛЕНИЕ	ПОТРЕБЛЕНИЕ
КОТЕЛЬНОЙ	ТЕПЛОВОЙ	РАСХОД	УСЛОВНОГО	ТОПЛИВА,
	ЭНЕРГИИ, ГКАЛ	УСЛОВНОГО	ТОПЛИВА, Т.У.Т.	ТЫС.М ³
		ТОПЛИВА,		
		Т.У.Т./ГКАЛ		
Котельная с. Шеговары,	1005,05	0,288	289,4	1090
ул. Центральная, 68а				
Котельная п. Красная	571,15	0,361	206,15	775
1	3,1,13	0,501	200,13	773
Горка, ул. Садовая, 1				

2.1.9. Надежность теплоснабжения

2.1.9.1. Общие положения

Существующая система теплоснабжения по надёжности должна отвечать требованиям СНиП 41-02-2003.

В качестве основных критериев надёжности тепловых сетей и системы теплоснабжения приняты:

- вероятность безотказной работы [Р];
- коэффициент готовности системы [КГ];
- живучесть системы [Ж].

Минимально допустимые значения показателя вероятности безотказной работы:

- источника тепловой энергии РИТ = 0,97;
- тепловых сетей PTC = 0.9;
- потребителя тепловой энергии $P\Pi T = 0.99$;
- системы в целом $PC \coprod T = 0.86$;
- коэффициент готовности системы теплоснабжения $K\Gamma = 0.97$.

Соблюдение данных нормативных показателей в конкретной системе теплоснабжения (источник тепловой энергии, тепловая сеть, потребитель) означает, что:

- при отказах в системе теплоснабжения температура в отапливаемых помещениях жилых и общественных зданий в период отказа не будет опускаться ниже плюс 12°С, в промышленных зданиях ниже плюс 8 °С. Математическое ожидание отказа не более 14 раз за 100 лет;
- расчётная температура воздуха в отапливаемых помещениях плюс 18 ^ 20°C будет поддерживаться в течение всего отопительного периода, за исключением 264 часов. В течение 264 часов температура воздуха может опускаться до плюс 16 18 °C.

2.1.9.2. Анализ аварийных отключений потребителей

За период эксплуатации аварий и инцидентов на тепловых сетях МО «Шеговарское» не было.

2.1.9.3. Анализ времени восстановления теплоснабжения потребителей после аварийных отключений

Время восстановления теплоснабжения потребителей после аварийных отключений подачи тепловой энергии в системах централизованного теплоснабжения МО «Шеговарское» не превышает 40 часов. Статистика аварийности не ведется.

2.1.9.4. Вероятность безотказной работы тепловых сетей Ртс

При расчете надежности системы транспорта теплоносителя МО «Шеговарское» использовались следующие исходные данные:

- расчетная температура наружного воздуха для систем отопления минус 34°C:
- расчетная температура внутреннего воздуха для жилых помещений плюс 20°C;
- повторяемость температур наружного воздуха определена по СНиП 2.01.01-82;
- внутренние тепловыделения 40% от фактической расчетной нагрузки отопления при соответствующей температуре наружного воздуха;
- коэффициент тепловой аккумуляции здания e = 40;
- минимальная внутренняя температура воздуха, сохраняемая в течение всего ремонтно-восстановительного периода t_{min} плюс 12°C;
- нормативный показатель вероятности безотказной работы тепловых сетей P_{TC} =0,9 (по СНиП 41-02-2003);
- время восстановления поврежденного элемента трубопровода рассчитывалось по методике, предложенной профессором Е.Я. Соколовым:
 - $T_B = 1.82 + 24.3 \text{ x d [часов]},$ где: d внутренний диаметр участка, м.;
- параметр потока отказов \mathcal{J} [1/м2] приняты на основании рисунка 4.14.

Одной из важнейших характеристик надежности элементов является интенсивность отказов Π , которую можно определить как вероятность того, что элемент, проработавший безотказно время t, откажет в последующий отрезок времени dt.

Вероятность безотказной работы за время t равна:

$$P(t)=e^{-\Pi t},$$

где P(t) - вероятность безотказной работы элемента за время t; $\mathcal{I}t$ - интенсивность отказа элемента.

Таким образом, можно считать, что функция надежности элементов системы теплоснабжения подчиняется экспоненциальному закону.

Вероятность же отказа элемента за время t будет иметь вид:

$$F(t) = 1 - e$$

A плотность вероятности отказов $F(t) = f(t) = \pi e^{-\pi t}$

Из теории вероятностей известно, что вероятность совместного появления двух событий или вероятность их произведения равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло. Таким образом, вероятность появления двух и более отказов на тепловых сетях одновременно ничтожно мала и не будет учитываться.

2.1.10. Цены (тарифы) на тепловую энергию

Динамика утвержденных агентством по тарифам и ценам Архангельской области тарифов на тепловую энергию, ООО «УК «Весна» потребителям, получающим тепловую энергию, представлена на рис.2.1.10.

5000	14
400	00
0	12
300	00
	10
200	00
0	80
100	0
0	60
С с 30.12.2012г.с 01.07.2013г.с 01.01.2014г.с 01.07.2014г.с 01.01.2015г.с	0
01.07.2015г.	40
I прочие от котельной с. Шеговары I I прочие от котельной п. Красная Горка А	4 0
население	20
	0 0

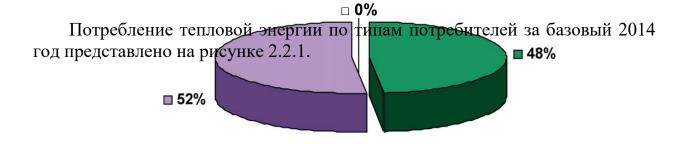
Плата за подключение к системе теплоснабжения, а также плата за услуги по поддержанию резервной тепловой мощности, отсутствуют.

Плата за услуги по поддержанию резервной тепловой мощности, в том числе для социально значимых категорий потребителей, в рассматриваемый период 2012-2014гг. не взималась.

2.1.11. Описание существующих технических и технологических проблем в системе теплоснабжения

Проанализировав информацию о производстве и потреблении тепловой энергии котельных МО «Шеговарское» и данные о состоянии оборудования котельных, можно сделать следующие выводы:

- 1. Общая установленная мощность котельных МО «Шеговарское» составляет 2,623 Гкал/час, присоединенная тепловая нагрузка к данным котельным составляет 0,63 Гкал/час. Запас установленной мощности 74%. КПД котлов составляет 66%.
- 2. Неэффективная эксплуатация котельных, высокая себестоимость вырабатываемой на них тепловой энергии, обусловлена завышенными мощностями и низкими подключенными нагрузками, низкими КПД котельного оборудования, высокими расходами на их эксплуатацию.
- 3. Тепловые потери в сетях, учтенные при регулировании тарифов, в среднем по муниципальному образованию составляют 10,05 %, по котельным величина колеблется от 8,96 до 10,6 %. Тепловые потери до 1,32 раза превышают нормативный показатель (нормативное значение составляет 8%).
- 4. Отсутствие химводоподготовки на котельных МО «Шеговарское» уменьшает КПД котлов и срок их эксплуатации.


2.2. Перспективное потребление тепловой энергии на цели теплоснабжения

2.2.1. Базовый уровень потребления тепла на цели теплоснабжения

Значения потребления тепловой энергии абонентами в МО «Шеговарское» с разделением по типу потребителей представлены в таблице 2.2.1.

Потребление тепловой энергии

ПОТРЕБИТЕЛИ	ПОТРЕБЛЕНИЕ ТЕПЛОВОЙ ЭНЕРГИИ,
	ГКАЛ
Жилой фонд (население)	668,86
Бюджетные организации и учреждения	714,62
Прочие потребители	-
Всего	1383,48

- □ жилой фонд
- □ бюджетые организации и учреждения
- □ прочие потребители

Рисунок 2.2.1. Потребление тепловой энергии

Как видно из рисунка 2.2.1. большую часть тепловой энергии от котельных MO «Шеговарское» потребляют бюджетные организации и учреждения.

2.2.2. Прогноз перспективной застройки

Сведений об ожидаемых численности населения, средней обеспеченности жилым фондом, жилом фонде не имеется.

По состоянию на 01.01.2015 г. в МО «Шеговарское» численность населения составляет 1818 человек; жилищная обеспеченность составляет

В муниципальном образовании преобладает усадебная застройка. Новое жилищное строительство в последние годы не ведется.

На проектные периоды предполагается строительство нового жилья усадебного типа.

Так как на существующих источниках тепловой энергии имеется резерв мощности, проектируемые общественные и жилые здания усадебного типа в с. Шеговары и п. Красная Горка могут быть присоединены центральным системам теплоснабжения, а при значительном удалении оборудованы собственными индивидуальными котельными и системами индивидуального поквартирного отопления.

В остальных населенных пунктах сохранится индивидуальное отопление.

2.2.3. Перспективные приросты тепловых нагрузок

Теплоснабжение с. Шеговары и п. Красная Горка будет зависеть от их перспективного развития. Основной вид топлива для котельных и систем индивидуального поквартирного отопления - твердое топливо (дрова).

Тепловые потоки для жилых и общественных зданий определены в соответствии с требованиями СНиП 41-02-2003 «Тепловые сети», исходя из численности населения и величины общей жилой площади отапливаемых зданий. Расчётные параметры наружного воздуха приняты по СНиП 23-0199*.

Максимальный тепловой поток на отопление жилых и общественных зданий:

$$Q_{a_{\text{max}}} = q_0 x A x (1 + k_1);$$

зданий - 0,25;

А - общая отапливаемая площадь жилых зданий, м

 q_o - укрупнённый показатель максимального теплового потока на отопление жилых зданий на 1м общей площади, q_o =220 ккал/ч для существующих зданий и 150 ккал/ч для зданий 1-ой очереди и расчетного срока строительства.

Максимальный тепловой поток на вентиляцию общественных зданий:

$$Q_{\text{vmax}} = k_1 x k_2 x g_o x A;$$

где, k_2 - коэффициент, учитывающий тепловой поток на вентиляцию общественных зданий k_2 - 0,6 (для зданий постройки после 1985г.), k_2 - 0,4 (для зданий постройки до 1985г.);

Максимальный тепловой поток на горячее водоснабжение:

$$Q_{h max}=2,4x m x Q_{hm}$$

где, Q_{hm} - укрупнённый показатель среднего теплового на горячее водоснабжение на одного человека - 323 ккал/ч (376 Bt) с учетом общественных зданий. m - количество жителей, пользующихся системами горячего водоснабжения.

Результаты расчётов тепловых нагрузок представлены в таблице 2.2.2. Общую потребность в тепловой энергии на отопление общественных и жилых зданий МО «Шеговарское» на расчетный срок необходимо уточнить после утверждения генерального плана муниципального образования.

Таблица 2.2.2.

				1 аолица 2.2.2.
ПОТРЕБИТЕЛИ ТЕПЛА	$V(M^3)$	T BH.	ГОДОВАЯ	РАСЧЕТНАЯ
		(°C)	НАГРУЗКА	ЧАСОВАЯ
			ОТОПЛЕНИ	ТЕПЛОВАЯ
			Я, (ГКАЛ)	НАГРУЗКА
				ОТОПЛЕНИЯ,
				(МКАЛ/ЧАС)
Жилой фонд:	8553	20	668,86	310
	1.4057	1.0	714.60	220
Социальная сфера:	14957	18	714,62	320
Прочие:		18		
Всего:			1383,48	630,0
Приросты площади строительных фондов,	-		-	-
планируемых к подключению до 2030 года к				
центральной системе теплоснабжения				
центральной системе теплоснаожения				

2.3. Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки

Перспективные балансы тепловой мощности и тепловой нагрузки в соответствии с генеральным планом будут иметь следующий вид:

Таблица 2.3.1.

			1 иолица 2.5.1.
НАИМЕНОВАНИЕ	УСТАНОВЛЕННАЯ	СУЩЕСТВУЮЩАЯ	ПЕРСПЕКТИВНАЯ
КОТЕЛЬНОЙ	МОЩНОСТЬ, ГКАЛ/Ч	ПОДКЛЮЧЕННАЯ	НАГРУЗКА, ГКАЛ/Ч
		НАГРУЗКА, ГКАЛ/Ч	
Котельная с. Шеговары, ул.	1,6	0,39	-
Центральная, 68а			
Котельная п. Красная Горка,	1,023	0,24	-
ул. Садовая, 1			

2.3.1. Балансы тепловой мощности и перспективной тепловой нагрузки в каждой из выделенных зон действия источников тепловой энергии с определением резервов существующей располагаемой тепловой мощности источников тепловой энергии

Перспективные балансы тепловой мощности источников тепловой энергии и перспективной тепловой нагрузки представлены в таблице 2.3.2.

Перспективные балансы тепловой мощности в Гкал/ч

Таблица 2.3.2.

							<u> элица 2.э.г.</u>	
ПЕРИОД	УСТАНОВ-		РАСПОЛА-	НАГРУЗКА		ІЕ ПРИСОЕДИ-	ДЕФИЦИТЫ	
	ЛЕННАЯ	ТЕПЛОВОЙ	ГАЕМАЯ	ПОТРЕБИ-	ПОТЕРИ	ВНЕННАЯ	(РЕЗЕРВЫ)	
	ТЕПЛОВАЯ	ЭНЕРГИИ	ТЕПЛОВА	ТЕЛЕЙ	СЕТЯХ	ТЕПЛОВАЯ	ТЕПЛОВОЙ	
	МОЩНОСТЬ	HA	Я			НАГРУЗКА (С	1	
		СОБСТВЕН-	МОЩНОС			УЧЕТОМ	ИСТОЧНИКОВ	
		ные д	ТЬ С				ТЕПЛА	
		хозяйст-	УЧЕТОМ			ТЕПЛОВЫХ		
		ВЕННЫЕ	КПД			СЕТЯХ)		
		НУЖДЫ	КОТЛОВ					
Котельна	Котельная с. Шеговары, ул. Центральная, 68а							
2015	1,6	0,037	1,1	0,39	0,1728	0,5628	0,3432	
2020	1,6	0,037	1,1	0,39	0,1728	0,5628	0,3432	
2030	1,6	0,037	1,1	0,39	0,1728	0,5628	0,3432	
Котельная	Котельная п. Красная Горка, ул. Садовая, 1							
2015	1,023	0,022	0,6	0,24	0,073	0,313	0,167	
2020	1,023	0,022	0,6	0,24	0,073	0,313	0,167	
2030	1,023	0,022	0,6	0,24	0,073	0,313	0,167	

2.3.2. Выводы о резервах (дефицитах) существующей системы теплоснабжения при обеспечении перспективной тепловой нагрузки потребителей

Мощность существующих котельных МО «Шеговарское» обеспечивает потребность потребителей тепла с. Шеговары и п. Красная Горка до конца расчетного срока.

2.4. Предложения по строительству, реконструкции, и техническому перевооружению источников тепловой энергии

Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии разрабатываются в соответствии пунктом 10 и пунктом 41 Требований к схемам теплоснабжения.

В результате разработки в соответствии с пунктом 41 Требований к схеме теплоснабжения должны быть решены следующие задачи. - определение условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления. Централизованное теплоснабжение предусмотрено для существующей и перспективной застройки.

Под индивидуальным теплоснабжением понимается, в частности, печное отопление и теплоснабжение от индивидуальных (квартирных) котлов. По существующему состоянию системы теплоснабжения индивидуальное теплоснабжение применяется в индивидуальном малоэтажном жилищном фонде.

- предложения по строительству источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных тепловых нагрузок;

- предложения по реконструкции котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии.
- обоснование предлагаемых для вывода в резерв и (или) вывода из эксплуатации котельных при передаче тепловых нагрузок на другие источники тепловой энергии.
- обоснование организации индивидуального теплоснабжения в зонах застройки поселения малоэтажными жилыми зданиями.

2.4.1. Предложения по строительству и реконструкции источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку в существующих и расширяемых зонах действия источников тепловой энергии

Теплоснабжение перспективных объектов, которые планируется разместить вне действия существующих котельных, 30H предлагается от автономных источников. Поэтому строительства новых источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку, не планируется.

Существующие твердотопливные котельные МО «Шеговарское» обеспечивают тепловой энергией на цели отопления потребителей с. Шеговары и п. Красная Горка. Суммарная подключенная нагрузка составляет 0,63 Гкал/ч, суммарная установленная мощность котельных - 2,623 Гкал/ч. Перечень существующего оборудования котельных представлен в таблицах 2.1.1. и 2.1.4.

Оборудование котельных имеет высокий процент износа, а также избыточную мощность, вследствие этого, затраты на выработку тепловой энергии неоправданно завышены при загрузке мощности менее, чем на 30%.

Отсутствие химводоподготовки на котельных уменьшает КПД котлов до 60% и уменьшает срок их эксплуатации.

Схемой теплоснабжения предусматривается техническое перевооружение котельных МО «Шеговарское».

Таблица 2.4.1.

КОТЕЛЬНАЯ МЕРОПРИЯТИЕ ЦЕЛИ РЕАЛИЗАЦИИ **МЕРОПРИЯТИЯ** Замена существующих (1977 года Котельная с. Повышение установки) котлов КВр-0,93 на новые с эксплуатационной Шеговары целью использования их мощности для надежности теплоснабжения существующей оборудования, повышение эффективности работы застройки в с. Шеговары систем теплоснабжения Котельная п. Красная Замена 3-х существующих (1987 года Горка установки) котлов Братск на новые котлы

КВр -0,3 с целью использования

	их мощности для теплоснабжения существующей застройки в п. Красная Горка	
Котельные с Шеговары, п. Красная Горка	Приобретение и монтаж установки химической водоподготовки для системы теплоснабжения	Увеличение срока эксплуатации тепловых энергоустановок и тепловых сетей
	Установка коммерческих приборов учета тепловой энергии	Учет фактического отпуска тепловой энергии

2.4.2. Предложения по строительству и реконструкции источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения существующих и перспективных тепловых нагрузок

Так как мощность котельных МО «Шеговарское» менее 10 МВт, то в соответствии со СНиП 41-02-2003 «Тепловые сети», меры по переводу котельных в источники с комбинированной выработкой электрической и тепловой энергии схемой теплоснабжения не предусмотрены.

2.4.3. Предложения по реконструкции котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии

Предложения по реконструкции котельных с увеличением зон их действия путем включения в их зоны действия других существующих источников тепловой энергии отсутствуют.

2.4.4 Предложения по выводу в резерв и (или) вывода из эксплуатации котельных при передаче тепловых нагрузок на другие источники тепловой энергии

Меры по выводу из эксплуатации котельных при передаче тепловых нагрузок на другие источники тепловой энергии схемой теплоснабжения не предусмотрены.

2.4.5. Предложения по целесообразности ввода новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии

Предложения по вводу новых источников тепловой энергии с использованием возобновляемых источников энергии отсутствуют.

Поскольку топливом для существующих источников тепловой энергии является древесное топливо, меры по их реконструкции с использованием возобновляемых источников энергии также не предусмотрены.

- 2.5. Предложения по строительству и реконструкции тепловых сетей и сооружений на них
- 2.5.1 Предложения по строительству и реконструкции тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии (использование существующих резервов)

Зоны с дефицитом располагаемой мощности отсутствуют. В связи с этим предложений по строительству и реконструкции тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии нет.

2.5.2 Предложения по строительству и реконструкции тепловых сетей для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах поселения, городского округа под жилищную, комплексную или производственную застройку

Строительство и реконструкция тепловых сетей в зонах с централизованным теплоснабжением для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах с. Шеговары и п. Красная Горка будет проводиться по мере необходимости подключении новых потребителей.

Проект тепловых сетей должен быть выполнен специализированной организацией с учетом существующих инженерных коммуникаций.

Прокладка теплосетей принята двухтрубной, подземной в непроходных лотковых каналах марки КЛ по альбомам типовых деталей серии 3.006.1-2/87 или надземной на низких опорах.

Трубопроводы подземной прокладки принимаются стальными, теплоизолированными пенополиуретаном с полиэтиленовым покрытием по ГОСТ 30732-2006, надземной с покрытием из оцинкованной стали.

На тепловых сетях должны быть предусмотрены тепловые камеры для установки отключающих устройств.

2.5.3. Предложения по строительству и реконструкции тепловых сетей в целях обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения

Предложения по новому строительству и реконструкции тепловых сетей, обеспечивающие условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения отсутствуют в виду территориальной удаленности источников теплоснабжения друг от друга.

2.5.4. Предложения по строительству и реконструкции тепловых сетей для повышения эффективности функционирования систем теплоснабжения

В связи с тем, что износ тепловых сетей МО «Шеговарское» составляет 60%, требуется замена изношенных участков.

Предложения по реконструкции тепловых сетей для повышения эффективности функционирования системы теплоснабжения представлены в таблице 2.5.1.

Объемы тепловых сетей, рекомендуемых к перекладке

_					<u>Таблица 2.5.1.</u>
No	НАИМЕНОВАНИЕ СООРУЖЕНИЙ	ЕДИН.	СРОКИ СТРОИТЕЛЬСТВА		ПРИМЕЧАНИЕ
Π/Π		ИЗМ.			
			Расчетный	в т.ч. 1-я	
			срок	очередь	
1.	Перекладка существующих	КМ	0,65117	0,382	В двухтруб.
	тепловых сетей на сети в ППУ				исполнении
	изоляции.				

Суммарный рекомендуемый объем перекладок тепловых сетей составляет 651,17 м.

2.5.5. Реконструкция тепловых сетей, подлежащих замене в связи с исчерпанием эксплуатационного ресурса

Предложенный сценарий развития системы теплоснабжения предусматривают замену тепловых сетей, выработавших свой ресурс, в рамках планово-предупредительных ремонтов.

2.5.6. Предложения по строительству и реконструкции насосных станций

Насосные станции отсутствуют, строительство новых не требуется.

2.6. Перспективные топливные балансы

2.6.1. Перспективные топливные балансы для каждого источника тепловой энергии, расположенного в границах поселения, городского округа по видам основного и резервного топлива на каждом этапе планируемого периода.

Перспективные топливные балансы для источников тепловой энергии, расположенного в МО «Шеговарское» представлены в таблице 2.6.1.

Перспективные топливные балансы для каждого источника тепловой энергии, расположенного в границах поселения

Таблица 2.6.1.

			1 иолици 2.0.				
НАГРУЗКА	отпуск тепловой	УДЕЛЬНЫЙ	РАСЧЕТНЫЙ ГОДОВОЙ				
ИСТОЧНИКА С УЧЕТОМ	ЭНЕРГИИ ОТ	РАСХОД	РАСХОД УСЛОВНОГО				
потерь мощности в	ИСТОЧНИКА, ГКАЛ	УСЛОВНОГО	ТОПЛИВА, Т.У.Т.				
ТЕПЛОВЫХ СЕТЯХ),		ТОПЛИВА НА					
ГКАЛ/Ч							
		ТЕПЛОВОЙ					
		ЭНЕРГИИ Т					
		У.Т./ГКАЛ					
Котельная с. Шеговары, ул. Центральная, 68а							
0,5628	1005,05	0,288	289,4				
0,5628	1005,05	0,288	289,4				
0,5628	1005,05	0,288	289,4				
Котельная п. Красная Горка, ул. Садовая, 1							
0,313	571,15	0,361	206,15				
0,313	571,15	0,361	206,15				
0,313	571,15	0,361	206,15				
	источника с учетом потерь мощности в тепловых сетях), гкал/ч овары, ул. Централи 0,5628 0,5628 о,5628 оная Горка, ул. Садо 0,313 0,313	отерь мощности висточника, гкал тепловых сетях), гкал/ч овары, ул. Центральная, 68а 0,5628 1005,05 0,5628 1005,05 0,5628 1005,05 оная Горка, ул. Садовая, 1 0,313 571,15 0,313 571,15	источника с учетом энергии от потерь мощности в источника, гкал тепловых сетях), гкал/ч тепловых обращения обращени				

2.7. Обоснование инвестиций в строительство, реконструкцию и техническое перевооружение

2.7.1 Оценка финансовых потребностей для осуществления строительства, реконструкции и технического перевооружения источников тепловой энергии и тепловых сетей

Основные проблемы системы теплоснабжения на территории МО «Шеговарское» моральный и физический износ оборудования котельных и теплосетей.

Средний износ трубопроводов теплосетей в муниципальном образовании составляет 60 %. Изношенность стальных труб является причиной недопоставки тепла потребителям. Всего в МО «Шеговарское» протяженность тепловых сетей составляет 1145,61 метров.

Предлагается модернизация тепловых сетей - замена ветхих стальных труб теплотрасс на трубы в пенополиуретановой изоляции (далее - ППУ изоляция) протяженностью 651,17 метров.

Средний износ котлоагрегатов в котельных МО «Шеговарское» 60 %. Изношенность стальных котлов является причиной снижения КПД котлоагрегатов. Необходима замена двух котлоагрегатов в котельной с. Шеговары и трех двух в котельной п. Красная Горка.

Настоящая технико-экономическая оценка выполнена с целью определения потребности в финансовых средствах при развитии системы теплоснабжения МО «Шеговарское».

Для повышения эффективности, надежности и качества теплоснабжения предлагается выполнить следующие мероприятия:

1. Замена котлового оборудования с высокой степенью износа и низким КПД

Таблина 2.7.1.

КОЛИЧЕСТВ	СУММАРНАЯ	СУММАРНОЕ	СРЕДНИЙ	ЗАТРАТЫ НА	РАСЧЕТНЫЙ
О КОТЛОВ,	МОЩНОСТЬ	КОЛИЧЕСТВО	КПД	ЗАМЕНУ	КПД НОВОГО
КОТОРЫЕ	ОБОРУДОВА	ПРОИЗВОДИ	ДАННОГО	ОБОРУДО	ОБОРУДО
ПРЕДЛАГА	ния,	МОМ ТЕПЛОВОЙ	ОБОРУДОВА-	ВАНИЯ,	ВАНИЯ
ЕТСЯ		ЭНЕРГИИ	ния до		
ЗАМЕНИТЬ			ЗАМЕНЫ		
	ГКАЛ/Ч	ГКАЛ	%	МЛН.РУБ	%
2	1,6	1005,05	72	1,16	75
3	1,023	571,15	60	1,158	75

2. Замена существующих участков тепловой сети

Реконструкция участков тепловых сетей по предварительной оценке составит:

Таблина 2.7.2.

1 4 0 1 11	тде 217 121	
ПРОТЯЖЕННОСТЬ	СТОИМОСТЬ 1 М	РАСХОДЫ НА ЗАМЕНУ
ТРАССЫ, М	,	СЕТЕЙ, МЛН. РУБ.
	РУБ.	
ры		
92	1,028	0,511
123	0,833	0,533
81	0,569	0,249
296		1,293
орка		
230	0,789	0,98
	ПРОТЯЖЕННОСТЬ ТРАССЫ, М ры 92 123 81 296 орка	ТРАССЫ, М ТРУБЫ ППУ, ТЫС. РУБ. ры 92 1,028 123 0,833 81 0,569 296 орка

Данные мероприятия способствуют эффективному потреблению энергоресурсов, снижению тепловых потерь в сетях, т.е. соответствуют перечню мероприятий по реализации закона 261-ФЗ «Об энергосбережении и повышении энергетической эффективности».

Потребность в финансовых средствах для осуществления мероприятий по развитию системы теплоснабжения МО «Шеговарское» определена по укрупненным показателям на основе прайс-листов изготовителей тепловых сетей и котельного оборудования.

2.7.2 Предложения по источникам инвестиций, обеспечивающих финансовые потребности

Финансирование мероприятий по строительству, реконструкции и техническому перевооружению источников тепловой энергии и тепловых сетей может осуществляться из двух основных групп источников: бюджетных и внебюджетных.

Бюджетное финансирование указанных проектов осуществляется из бюджета Российской Федерации, бюджетов субъектов Российской Федерации и местных

бюджетов в соответствии с Бюджетным кодексом РФ и другими нормативноправовыми актами.

Дополнительная государственная поддержка может быть оказана в соответствии с законодательством о государственной поддержке инвестиционной деятельности, в том числе при реализации мероприятий по энергосбережению и повышению энергетической эффективности.

Внебюджетное финансирование осуществляется за счет собственных средств теплоснабжающих и теплосетевых предприятий, состоящих из прибыли и амортизационных отчислений. В соответствии с действующим законодательством согласованию c органами тарифного регулирования организаций теплоснабжающих теплосетевых включаться И может инвестиционная составляющая, необходимая для реализации указанных выше мероприятий.

Собственные средства энергоснабжающих предприятий

Прибыль. Чистая прибыль предприятия - один из основных источников инвестиционных средств на предприятиях любой формы собственности.

Амортизационные фонды. Амортизационный фонд - это денежные средства, накопленные за счет амортизационных отчислений основных средств (основных фондов) и предназначенные для восстановления изношенных основных средств и приобретения новых.

Бюджетное финансирование

Федеральный бюджет. Возможность финансирования мероприятий Программы из средств федерального бюджета рассматривается в установленном порядке на федеральном уровне при принятии соответствующих федеральных целевых программ.

Распоряжением Правительства Российской Федерации от 02.02.2010 № 102-р была утверждена Концепция федеральной целевой программы «Комплексная программа модернизации и реформирования жилищно- коммунального хозяйства на 2010-2020 годы».

На основании Концепции Министерством регионального развития Российской Федерации разработан проект федеральной целевой программы «Комплексная программа модернизации и реформирования жилищно- коммунального хозяйства на 2013-2015 годы».

Согласно опубликованному проекту, целью Программы является повышение уровня надежности поставки коммунальных ресурсов и эффективности деятельности организаций коммунального хозяйства при обеспечении доступности коммунальных услуг для населения.

2.8. Обоснование предложения по определению единой теплоснабжающей организации

Решение по установлению единой теплоснабжающей организации осуществляется на основании критериев определения единой теплоснабжающей

организации, установленных в правилах организации теплоснабжения, утверждаемых Правительством Российской Федерации.

В соответствии со статьей 2 пунктом 28 Федерального закона 190 «О теплоснабжающая теплоснабжении»: «Елиная организация системе теплоснабжения (лалее елиная теплоснабжающая организация) теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере федеральный (далее орган исполнительной теплоснабжения уполномоченный на реализацию государственной политики теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации». В соответствии со статьей 6 пунктом 6 Федерального закона 190 «О теплоснабжении»: «К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относится утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации». Предложения установлению ПО организации осуществляются теплоснабжающей на основании определения единой теплоснабжающей организации, установленных разделом II Правил организации теплоснабжения в Российской Федерации, утвержденных постановлением Правительства Российской Федерации от 8 августа 2012 года № 808.

Критерии и порядок определения единой теплоснабжающей организации:

- 1. Статус единой теплоснабжающей организации присваивается органом местного самоуправления или федеральным органом исполнительной власти (далее уполномоченные органы) при утверждении схемы теплоснабжения поселения, городского округа, а в случае смены единой теплоснабжающей организации при актуализации схемы теплоснабжения.
- 2. В проекте схемы теплоснабжения должны быть определены границы зон деятельности единой теплоснабжающей организации (организаций). Границы зоны (зон) деятельности единой теплоснабжающей организации (организаций) определяются границами систем теплоснабжения, в отношении которой присваивается соответствующий статус. В случае если на территории поселения, несколько существуют систем округа уполномоченные органы вправе: - определить единую теплоснабжающую организацию (организации) в каждой из систем теплоснабжения, расположенных в границах поселения, городского округа; - определить на несколько систем теплоснабжения единую теплоснабжающую организацию, если такая организация владеет на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в каждой из систем теплоснабжения, входящей в зону её деятельности.
- 3. Для присвоения статуса единой теплоснабжающей организации впервые на территории поселения, городского округа, лица, владеющие на праве

собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями на территории поселения, городского округа вправе подать в течение одного месяца с даты размещения на сайте поселения, городского округа, города федерального значения проекта схемы теплоснабжения в орган местного самоуправления заявки на присвоение статуса единой теплоснабжающей организации с указанием зоны деятельности, в которой указанные лица планируют исполнять функции единой теплоснабжающей организации. Орган местного самоуправления обязан разместить сведения о принятых заявках на сайте поселения, городского округа.

- случае если в отношении одной зоны деятельности единой теплоснабжающей организации подана одна заявка от лица, владеющего на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей системе теплоснабжения, то статус единой теплоснабжающей организации присваивается указанному лицу. В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подано несколько заявок от лиц, владеющих на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми соответствующей теплоснабжения, системе орган самоуправления присваивает статус единой теплоснабжающей организации в соответствии с критериями Правил организации теплоснабжения.
- 5. Критериями определения единой теплоснабжающей организации являются:
- 1) владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей совокупной установленной тепловой мощностью в границах зоны деятельности единой теплоснабжающей организации или тепловыми сетями, к которым непосредственно подключены источники тепловой энергии с наибольшей совокупной установленной тепловой мощностью в границах зоны деятельности единой теплоснабжающей организации;
- 2) размер уставного (складочного) капитала хозяйственного товарищества или общества, уставного фонда унитарного предприятия должен быть не менее остаточной балансовой стоимости источников тепловой энергии и тепловых сетей, которыми указанная организация владеет на праве собственности или ином законном основании в границах зоны деятельности единой теплоснабжающей организации. Размер уставного капитала и остаточная балансовая стоимость имущества определяются по данным бухгалтерской отчетности на последнюю отчетную дату перед подачей заявки на присвоение статуса единой теплоснабжающей организации.
- 6. В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подано более одной заявки на присвоение соответствующего статуса от лиц, соответствующих критериям, установленным настоящими Правилами, статус единой теплоснабжающей организации присваивается организации, способной в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения. Способность обеспечить надежность теплоснабжения определяется наличием у организации технических возможностей и квалифицированного персонала по наладке,

мониторингу, диспетчеризации, переключениям и оперативному управлению гидравлическими режимами, и обосновывается в схеме теплоснабжения.

- 7. В случае если в отношении зоны деятельности единой теплоснабжающей организации не подано ни одной заявки на присвоение соответствующего статуса, статус единой теплоснабжающей организации присваивается организации, владеющей в соответствующей зоне деятельности источниками тепловой энергии и (или) тепловыми сетями, и соответствующей критериям Правил организации теплоснабжения.
- 8. Единая теплоснабжающая организация при осуществлении своей деятельности обязана:
- а) заключать и надлежаще исполнять договоры теплоснабжения со всеми обратившимися к ней потребителями тепловой энергии в своей зоне деятельности;
- б) осуществлять мониторинг реализации схемы теплоснабжения и подавать в орган, утвердивший схему теплоснабжения, отчеты о реализации, включая предложения по актуализации схемы теплоснабжения;
- в) надлежащим образом исполнять обязательства перед иными теплоснабжающими и теплосетевыми организациями в зоне своей деятельности;
- г) осуществлять контроль режимов потребления тепловой энергии в зоне своей деятельности.

В настоящее время на территории МО «Шеговарское» функционирует теплоснабжающая организация - ООО «УК «Весна». Тарифы, установленные Агентством по тарифам и ценам Архангельской области, на тепловую энергию, поставляемую ООО «УК «Весна» приведены в таблице 2.8.1.

Тарифы на тепловую энергию

Таблица 2 8 1

				1 аолица 2.6.1.
	НАИМЕНОВАНИЕ	ДАТА ВВОДА ТАРИФА	ТАРИФ ДЛЯ	ТАРИФ ПРОЧИМ
	КОТЕЛЬНОЙ		НАСЕЛЕНИЯ,	ПОТРЕБИТЕЛЯМ,
			*(РУБ/ГКАЛ)	*(РУБ/ГКАЛ)
1		с 30.12.2012г.	928,65	2007,0
		с 01.07.2013г.	1068,0	3267,0
	Котельная с. Шеговары,	с 01.01.2014г.	928,65	3267,0
	ул. Центральная, 68а	с 01.07.2014г.	1141,05	3267,0
		с 01.01.2015г.	1141,05	3267,0
		с 01.07.2015г.	1273,0	3730,54
2		с 30.12.2012г.	928,65	1947,0
		с 01.07.2013г.	1068,0	2807,0
	Котельная п. Красная	с 01.01.2014г.	928,65	2807,0
	Горка, ул. Садовая, 1	с 01.07.2014г.	1141,05	2863,0
		с 01.01.2015г.	1141,05	2863,0
		с 01.07.2015г.	1273,0	3978,89
		<u>*</u> 1	шпо	

* тариф указан с учетом НДС.